【BZOJ】2242: [SDOI2011]计算器
http://www.lydsy.com/JudgeOnline/problem.php?id=2242
题意:(前两个问略...)第三个问是,求$a^x \equiv b \pmod{p}$最小的$x$,或者输出无解,它们范围都是$10^9$哒= =
#include <bits/stdc++.h>
using namespace std; typedef long long ll;
int mpow(ll a, ll b, ll p) {
ll r=1; a%=p;
while(b) { if(b&1) r=((ll)r*a)%p; a=((ll)a*a)%p; b>>=1; }
return r;
}
void gcd(ll a, ll b, ll &d, ll &x, ll &y) {
if(!b) { d=a; x=1; y=0; return; }
gcd(b, a%b, d, y, x); y-=a/b*x;
}
void ni(ll a, ll b, ll p) {
ll d, x, y, t;
gcd(a, p, d, x, y); if(b%d) { puts("Orz, I cannot find x!"); return; }
t=p/d;
while(x<0) x+=t;
while(x>=t) x-=t;
printf("%lld\n", (x*b)%p);
}
map<int, int> s;
void bsgs(ll y, ll z, ll p) {
y%=p; z%=p;
if(z==1) { puts("0"); return; }
if(!y && !z) { puts("1"); return; }
if(!y) { puts("Orz, I cannot find x!"); return; }
s.clear();
int m=sqrt(p+0.5), t=1, w=y;
for(int i=0; i<m; ++i) s[((ll)z*t)%p]=i, t=((ll)t*w)%p;
w=mpow(y, m, p); y=1; t=(p-1)/m+1; bool flag=1;
for(int i=0; i<=t; ++i) if(s.count(y)) { printf("%lld\n", (ll)m*i-s[y]); flag=0; break; } else y=((ll)y*w)%p;
if(flag) puts("Orz, I cannot find x!");
}
int main() {
int z, y, p, c, T;
scanf("%d%d", &T, &c);
while(T--) {
scanf("%d%d%d", &y, &z, &p);
if(c==1) printf("%d\n", mpow(y, z, p));
else if(c==2) ni(y, z, p);
else bsgs(y, z, p);
}
return 0;
}
bsgs裸题....其实就是一种分块思想..(为啥有那么牛的名字呢= =其实是我不想加分类了= =)即小块暴力然后大块就解决的思想,相信你们都能秒懂= =
要求
$$a^x \equiv b \pmod{p}$$
的最小的$x$,那么
首先我们随便选一个$m$,使得$x=km-t, 0<=t<m$,(这虽然有点区别于取余,但是这是为了方便= =)
然后推得
$$a^{km} \equiv ba^t \pmod{p}$$
然后就是右边暴力预处理,左边枚举$k$...由于枚举$k$复杂度是$O(n/m)$,显然取$m=\sqrt{n}$最优= =...由于懒,开个set记录右边= =于是总复杂度是$O(\sqrt{n}log(\sqrt{n}))$
哦最后忘记一件事= =要特判啊= =比如说$b=1$显然$x=0$啊,而且取模了$a, b$后注意特判$a=0$的情况啊= =关于一些情况没特判的同学= =我要hack你们...比如数据
1 3
4 1 2
【BZOJ】2242: [SDOI2011]计算器的更多相关文章
- bzoj 2242: [SDOI2011]计算器 BSGS+快速幂+扩展欧几里德
2242: [SDOI2011]计算器 Time Limit: 10 Sec Memory Limit: 512 MB[Submit][Status][Discuss] Description 你被 ...
- BZOJ 2242: [SDOI2011]计算器( 快速幂 + 扩展欧几里德 + BSGS )
没什么好说的... --------------------------------------------------------------------- #include<cstdio&g ...
- BZOJ 2242: [SDOI2011]计算器 [快速幂 BSGS]
2242: [SDOI2011]计算器 题意:求\(a^b \mod p,\ ax \equiv b \mod p,\ a^x \equiv b \mod p\),p是质数 这种裸题我竟然WA了好多次 ...
- bzoj 2242 [SDOI2011]计算器(数论知识)
Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给 ...
- BZOJ.2242.[SDOI2011]计算器(扩展欧几里得 BSGS)
同余方程都不会写了..还一直爆int /* 2.关于同余方程ax ≡b(mod p),可以用Exgcd做,但注意到p为质数,y一定有逆元 首先a%p=0时 仅当b=0时有解:然后有x ≡b*a^-1( ...
- BZOJ 2242 [SDOI2011]计算器(快速幂+Exgcd+BSGS)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2242 [题目大意] 给出T和K 对于K=1,计算 Y^Z Mod P 的值 对于K=2 ...
- bzoj 2242 [SDOI2011]计算器——BSGS模板
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2242 第一道BSGS! 咳咳,我到底改了些什么?…… 感觉和自己的第一版写的差不多……可能是 ...
- BZOJ 2242 [SDOI2011]计算器 BSGS+高速幂+EXGCD
题意:id=2242">链接 方法: BSGS+高速幂+EXGCD 解析: BSGS- 题解同上.. 代码: #include <cmath> #include <c ...
- bzoj 2242: [SDOI2011]计算器
#include<cstdio> #include<iostream> #include<map> #include<cmath> #define ll ...
- [原博客] BZOJ 2242 [SDOI2011] 计算器
题目链接 noip级数论模版题了吧.让求三个东西: 给定y,z,p,计算`Y^Z Mod P` 的值. 给定y,z,p,计算满足`xy≡ Z ( mod P )`的最小非负整数. 给定y,z,p,计算 ...
随机推荐
- vim: vs sp 调整窗口高度和宽度
转自:http://www.cnblogs.com/xuechao/archive/2011/03/29/1999292.html vim多窗口有时候需要调整默认的窗口宽度和高度,可以用如下命令配合使 ...
- 实现VS2010整合NUnit进行单元测试(转载)
代码编写,单元测试必不可少,简单谈谈Nunit进行单元测试的使用方式: 1.下载安装NUnit(最新win版本为NUnit-2.6.4.msi) http://www.nunit.org/index. ...
- poj 2262【素数表的应用---判断素数】【哈希】
Goldbach's Conjecture Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 35214 Accepted: ...
- 使用RMAN DUPLICATE...FROM ACTIVE DATABASE创建物理standby database
Applies to: Oracle Server - Enterprise Edition - Version 11.1.0.6 to 11.2.0.4 [Release 11.1 to 11.2] ...
- Fallout4 Creation Kit
按住SHIFT是旋转视角,按住鼠标中键 E是移动物品 双击W是旋转物品 数字键2 是调整物品大小
- oracle相关环境变量配置
ORACLE_HOME:D:\Program File\oracle\product\10.2.0\db_1 ORACLE_SID:orcl Path中增加:D:\ProgramFile\oracle ...
- ORA-03113:通信通道的文件结尾解决
今天跟往常一样,登陆PL/SQL,确登陆失败,出现一个错误“ORA-01034”和“ORA-27101”如图: 然后就就通过命令提示符去登陆Oracle,去查看怎么回事,然后问题进一步出现,错误“OR ...
- 如何通过阅读C标准来解决C语言语法问题
有时候必须非常专注地阅读ANSI C标准才能找到某个问题的答案.一位销售工程师把下面这段代码作为测试用例发给Sun的编译小组. foo(const char **p) {} int main(int ...
- error MSB6006: “cmd.exe”已退出,代码为 3。
VS2012 Qt项目生成提示以下错误: 原因是 generated files 的 debug或release文件夹下的文件不存在. 解决方法:QT5 –>convert project ...
- 接口JSon字符串格式