斜率优化DP

QWQ

upd:这里是yyb的更新,今天是2019.3.18的晚上。

我觉我的这篇文章就是在扯蛋,所以到这里看斜率优化把QwQ。

题外话

考试的时候被这个玩意弄得瑟瑟发抖

大概是yybGG的Day4

小蒟蒻表示根本不会做.....

然后自己默默地搞了一下斜率优化

这里算是开始吗??

其实我讲的会非常非常非常简单,,,而且绝对没有一张图(因为我绘图水平太菜)

貌似没太多友善的题目可以用来搞....算了

虚一点,缥缈一点的来说吧....

其实我就是写给自己看的...

对于某一类DP方程形如:(当然max也可以)

\[f[i]=min(f[j]+g(i,j))
\]

其中\(g(i,j)\)

是一个只和i于j相关的函数

我们知道

转移一定是从某个位置转移过来了,其他位置的转移一定不会比这个位置好

所以,不妨设从j位置转移过来,另外一个奇怪的位置从k转一个过来

于是有:

\[f[j]+g(i,j)<f[k]+g(i,k)
\]

接下来再假设一步

我们假设\(g(i,j)=h(i)t(j)\)

其中 \(h(i)\)和\(t(j)\)是只和i与j有关的函数

那么不等式变为

\[f[j]+h(i)t(j)<f[k]+h(i)t(k)
\]

移项得

\[h(i)(t(j)-t(k))<f[k]-f[j]
\]

\[h(i)<\frac{f[k]-f[j]}{t(j)-t(k)}
\]

这个时候就看到右边的东西没有???

但是要记住,除过去可能会要变号

这玩意就可以视作一个斜率啦

但是,这个玩意有了不能够直接用嗷

只有当满足单调的时候才能够用斜率优化

当且仅当\(h(i)、f[i]、t(i)\)

都要满足单调的时候才能够用(根据取max或min,符号等单调性有所不同)

这个时候,利用单调队列维护一个凸包就可以啦

具体的类似代码如下:

for(int i=1;i<=n;++i)
{
while(head<tail&&count(Q[head],Q[head+1])<=h[i])Head++;
int get=Q[head];
f[i]=f[get]+Calc(i,get);
while(head<tail&&count(Q[tail-1],Q[tail])>=count(Q[tail],i))tail--;
Q[++tail]=i;
}

这是一份比较伪的代码

第一个while循环,目的是弹出队列头位置的不合法的状态(因为\(h(i)\)的值在变化)

中间的两句话是转移,可以直接利用斜率优化\(O(1)\)转移

后面那个while循环目的是维护单调性,当前的节点如果放进来会破坏队尾的单调性,所以要进行调整

最后一个是加入队尾,继续进行操作

这样子的话就可以维护斜率进行斜率优化啦


接下来是几道题目

有待补充

【BZOJ1010】【HNOI2008】玩具装箱

【BZOJ1911】【APIO2010】特别行动队

【Luogu2900】土地征用

【BZOJ1096】【ZJOI2007】仓库建设

蒟蒻关于斜率优化DP简单的总结的更多相关文章

  1. 斜率优化dp 的简单入门

    不想写什么详细的讲解了...而且也觉得自己很难写过某大佬(大米饼),于是建议把他的 blog 先看一遍,然后自己加了几道题目以及解析...顺便建议看看算法竞赛(蓝皮书)的 0x5A 斜率优化(P294 ...

  2. [BZOJ3156]防御准备(斜率优化DP)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3156 分析: 简单的斜率优化DP

  3. HDU 3507 Print Article(斜率优化DP)

    题目链接 题意 : 一篇文章有n个单词,如果每行打印k个单词,那这行的花费是,问你怎么安排能够得到最小花费,输出最小花费. 思路 : 一开始想的简单了以为是背包,后来才知道是斜率优化DP,然后看了网上 ...

  4. bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 11893  Solved: 5061[Submit][S ...

  5. 2018.09.10 bzoj1597: [Usaco2008 Mar]土地购买(斜率优化dp)

    传送门 终究还是通宵了啊... 这是一道简单的斜率优化dp. 先对所有土地排序,显然如果有严格小于的两块土地不用考虑小的一块. 于是剩下的土地有一条边单增,另外一条单减. 我们假设a[i]是单减的,b ...

  6. 2018.09.05 任务安排(斜率优化dp)

    描述 这道题目说的是,给出了n项必须按照顺序完成的任务,每项任务有它需要占用机器的时间和价值.现在我们有一台机器可以使用,它每次可以完成一批任务,完成这批任务所需的时间为一个启动机器的时间S加上所有任 ...

  7. 斜率优化DP学习笔记

    先摆上学习的文章: orzzz:斜率优化dp学习 Accept:斜率优化DP 感谢dalao们的讲解,还是十分清晰的 斜率优化$DP$的本质是,通过转移的一些性质,避免枚举地得到最优转移 经典题:HD ...

  8. 【转】斜率优化DP和四边形不等式优化DP整理

    (自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重 ...

  9. HDU 2829 Lawrence (斜率优化DP或四边形不等式优化DP)

    题意:给定 n 个数,要你将其分成m + 1组,要求每组数必须是连续的而且要求得到的价值最小.一组数的价值定义为该组内任意两个数乘积之和,如果某组中仅有一个数,那么该组数的价值为0. 析:DP状态方程 ...

随机推荐

  1. yii2 源码分析Event类分析 (三)

    转载请注明链接:http://www.cnblogs.com/liuwanqiu/p/6739880.html Event是所有事件的基类,它继承Object类 Event类上面的注释的大致意思: * ...

  2. PHP将HTML的内容保存成word文档

    <?php class word { function start() { ob_start(); echo '<html xmlns:o="urn:schemas-micros ...

  3. 9、flask之SQLAlchemy

    本篇导航: 介绍 使用 SQLAlchemy-Utils 一. 介绍 SQLAlchemy是一个基于Python实现的ORM框架.该框架建立在 DB API之上,使用关系对象映射进行数据库操作,简言之 ...

  4. Linux常用命令详解(二) -- 查找常用命令

    locate:    作用:在后台数据库中按文件名搜索,搜索速度更快    命令格式:locate 文件名    选项或参数:            -l    num(要显示的行数)         ...

  5. OSQA的配置

    1.安装Python,我安装的是python 2.7.3 2.安装setuptools 下载setuptools,并安装 安装好以后,在pyton2.7/scripts的路径下将会有easy_inst ...

  6. 模板语言变量,js变量,js自执行函数之前嵌套调用

    1.模板语言变量 前端html页面中展示 {{ nodeIp }} 2.js变量引用模板语言变量 把模板语言变量传递给js,js去执行页面操作(变量的转换,只适用于字符串) var IP = &quo ...

  7. linux 分布式文件系统

    分布式文件系统(DFS) 指文件系统管理的物理存储资源不一定直接连接在本地节点上 而是通过计算机网络与节点相连 分布式文件系统的设计基于客户机/服务器模式 一个典型的网络可能包括多个多个用户访问的服务 ...

  8. linux周期性计划任务 进程管理

    周期性计划任务crontab命令系统服务:/etc/init.d/crond(crond必须启动才会生效)用户计划:/var/spool/cron/用户名默认的计划任务全局配置:/etc/cronta ...

  9. js中对一组数组进行求和

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  10. 2_Add Two Numbers --LeetCode

    原题如下: 思路:在一个while中遍历两个链表,直到最长的链表为空,或者没有进位.每一步获取两个链表对应的结点的值a,b,然后相加a+b.如果上一步又进位,那就加a+b+1,若由于进位加1后还产生进 ...