蒟蒻关于斜率优化DP简单的总结
斜率优化DP
QWQ
upd:这里是yyb的更新,今天是2019.3.18的晚上。
我觉我的这篇文章就是在扯蛋,所以到这里看斜率优化把QwQ。
题外话
考试的时候被这个玩意弄得瑟瑟发抖
大概是yybGG的Day4
小蒟蒻表示根本不会做.....
然后自己默默地搞了一下斜率优化
这里算是开始吗??
其实我讲的会非常非常非常简单,,,而且绝对没有一张图(因为我绘图水平太菜)
貌似没太多友善的题目可以用来搞....算了
虚一点,缥缈一点的来说吧....
其实我就是写给自己看的...
对于某一类DP方程形如:(当然max也可以)
\]
其中\(g(i,j)\)
是一个只和i于j相关的函数
我们知道
转移一定是从某个位置转移过来了,其他位置的转移一定不会比这个位置好
所以,不妨设从j位置转移过来,另外一个奇怪的位置从k转一个过来
于是有:
\]
接下来再假设一步
我们假设\(g(i,j)=h(i)t(j)\)
其中 \(h(i)\)和\(t(j)\)是只和i与j有关的函数
那么不等式变为
\]
移项得
\]
\]
这个时候就看到右边的东西没有???
但是要记住,除过去可能会要变号
这玩意就可以视作一个斜率啦
但是,这个玩意有了不能够直接用嗷
只有当满足单调的时候才能够用斜率优化
当且仅当\(h(i)、f[i]、t(i)\)
都要满足单调的时候才能够用(根据取max或min,符号等单调性有所不同)
这个时候,利用单调队列维护一个凸包就可以啦
具体的类似代码如下:
for(int i=1;i<=n;++i)
{
while(head<tail&&count(Q[head],Q[head+1])<=h[i])Head++;
int get=Q[head];
f[i]=f[get]+Calc(i,get);
while(head<tail&&count(Q[tail-1],Q[tail])>=count(Q[tail],i))tail--;
Q[++tail]=i;
}
这是一份比较伪的代码
第一个while循环,目的是弹出队列头位置的不合法的状态(因为\(h(i)\)的值在变化)
中间的两句话是转移,可以直接利用斜率优化\(O(1)\)转移
后面那个while循环目的是维护单调性,当前的节点如果放进来会破坏队尾的单调性,所以要进行调整
最后一个是加入队尾,继续进行操作
这样子的话就可以维护斜率进行斜率优化啦
接下来是几道题目
有待补充
【BZOJ1010】【HNOI2008】玩具装箱
【BZOJ1911】【APIO2010】特别行动队
【Luogu2900】土地征用
【BZOJ1096】【ZJOI2007】仓库建设
蒟蒻关于斜率优化DP简单的总结的更多相关文章
- 斜率优化dp 的简单入门
不想写什么详细的讲解了...而且也觉得自己很难写过某大佬(大米饼),于是建议把他的 blog 先看一遍,然后自己加了几道题目以及解析...顺便建议看看算法竞赛(蓝皮书)的 0x5A 斜率优化(P294 ...
- [BZOJ3156]防御准备(斜率优化DP)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3156 分析: 简单的斜率优化DP
- HDU 3507 Print Article(斜率优化DP)
题目链接 题意 : 一篇文章有n个单词,如果每行打印k个单词,那这行的花费是,问你怎么安排能够得到最小花费,输出最小花费. 思路 : 一开始想的简单了以为是背包,后来才知道是斜率优化DP,然后看了网上 ...
- bzoj1010[HNOI2008]玩具装箱toy 斜率优化dp
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 11893 Solved: 5061[Submit][S ...
- 2018.09.10 bzoj1597: [Usaco2008 Mar]土地购买(斜率优化dp)
传送门 终究还是通宵了啊... 这是一道简单的斜率优化dp. 先对所有土地排序,显然如果有严格小于的两块土地不用考虑小的一块. 于是剩下的土地有一条边单增,另外一条单减. 我们假设a[i]是单减的,b ...
- 2018.09.05 任务安排(斜率优化dp)
描述 这道题目说的是,给出了n项必须按照顺序完成的任务,每项任务有它需要占用机器的时间和价值.现在我们有一台机器可以使用,它每次可以完成一批任务,完成这批任务所需的时间为一个启动机器的时间S加上所有任 ...
- 斜率优化DP学习笔记
先摆上学习的文章: orzzz:斜率优化dp学习 Accept:斜率优化DP 感谢dalao们的讲解,还是十分清晰的 斜率优化$DP$的本质是,通过转移的一些性质,避免枚举地得到最优转移 经典题:HD ...
- 【转】斜率优化DP和四边形不等式优化DP整理
(自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重 ...
- HDU 2829 Lawrence (斜率优化DP或四边形不等式优化DP)
题意:给定 n 个数,要你将其分成m + 1组,要求每组数必须是连续的而且要求得到的价值最小.一组数的价值定义为该组内任意两个数乘积之和,如果某组中仅有一个数,那么该组数的价值为0. 析:DP状态方程 ...
随机推荐
- linux下简洁优化部署tomcat应用
本文来自我的github pages博客http://galengao.github.io/ 即www.gaohuirong.cn 摘要: 本文是自己根据公司架构部署tomcat方法整理出来的文本 修 ...
- 一位IT男的7年工作经验总结
一位IT男的7年工作经验总结 1.分享第一条经验:"学历代表过去.能力代表现在.学习力代表未来." 其实这是一个来自国外教育领域的一个研究结果.相信工作过几年.十几年的朋友对这个道 ...
- 试着把.net的GC讲清楚(2)
试着把.net的GC讲清楚(1) 上篇文章说了一些基本概念的东西,然后还有很多东西概念没有头绪,这篇文章我试着解释 GC的回收算法详细步骤? 上篇]文章讲了.net GC的算法是Mark and Co ...
- ireport报表学习
常用组件介绍: 制作一个报表一般四个组件比较常用,下面分别介绍 Rectangle:用于画表格的样式,整个表格的样式使用次组件做出来的,本控件表现为一个黑色矩形框,多个黑色矩形框排在一起可以组合出来任 ...
- 搭建VUE项目的准备(利用vue-cli来构建项目)
首先需要明确的是:Vue.js 不支持 IE8 及其以下 IE 版本,一般用与移动端,基础:开启最高权限的DOS命令(否则会出现意外的错误提示) 注意:个人小推荐如果我们不知道如何才能开启最高权限 ...
- core java
ConsoleTest,这个程序如果在IDE里运行就会因无法获得控制台而报错 import java.io.Console; public class ConsoleTest { public sta ...
- P3
package p3.hadoop.mapred; import java.io.IOException; import java.io.InputStream; import org.apache. ...
- c#判断外部可执行程序是否已打开(若未打开则打开)
#region 通过当前代码执行路径向上找到相关exe,并根据processes.Length判断是否已启动 private bool CheckAndOpenExe(string exeName) ...
- @restcontroller与@controller的区别
这段时间偷偷看了下spring boot.结果引用模板时没注意,把@restcontroller替换了@controlle,结果模板出不来.终究原因是spring的知识不到位. 下面说说这2的说明和区 ...
- 进程中调用CreateMutex
// TestStorage.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <Windows.h> #inc ...