Given a binary search tree and a node in it, find the in-order successor of that node in the BST.

The successor of a node p is the node with the smallest key greater than p.val.

Example 1:

Input: root = [2,1,3], p = 1
Output: 2
Explanation: 1's in-order successor node is 2. Note that both p and the return value is of TreeNode type.

Example 2:

Input: root = [5,3,6,2,4,null,null,1], p = 6
Output: null
Explanation: There is no in-order successor of the current node, so the answer is null.

Note:

  1. If the given node has no in-order successor in the tree, return null.
  2. It's guaranteed that the values of the tree are unique.

这道题让我们求二叉搜索树的某个节点的中序后继节点,那么根据 BST 的性质知道其中序遍历的结果是有序的,博主最先用的方法是用迭代的中序遍历方法,然后用一个 bool 型的变量b,初始化为 false,进行中序遍历,对于遍历到的节点,首先看如果此时b已经为 true,说明之前遍历到了p,那么此时返回当前节点,如果b仍为 false,看遍历到的节点和p是否相同,如果相同,此时将b赋为 true,那么下一个遍历到的节点就能返回了,参见代码如下:

解法一:

class Solution {
public:
TreeNode* inorderSuccessor(TreeNode* root, TreeNode* p) {
stack<TreeNode*> s;
bool b = false;
TreeNode *t = root;
while (t || !s.empty()) {
while (t) {
s.push(t);
t = t->left;
}
t = s.top(); s.pop();
if (b) return t;
if (t == p) b = true;
t = t->right;
}
return NULL;
}
};

下面这种方法是用的中序遍历的递归写法,需要两个全局变量 pre 和 suc,分别用来记录祖先节点和后继节点,初始化将他们都赋为 NULL,然后在进行递归中序遍历时,对于遍历到的节点,首先看 pre 和p是否相同,如果相同,则 suc 赋为当前节点,然后将 pre 赋为 root,那么在遍历下一个节点时,pre 就起到记录上一个节点的作用,参见代码如下:

解法二:

class Solution {
public:
TreeNode* inorderSuccessor(TreeNode* root, TreeNode* p) {
if (!p) return NULL;
inorder(root, p);
return suc;
}
void inorder(TreeNode *root, TreeNode *p) {
if (!root) return;
inorder(root->left, p);
if (pre == p) suc = root;
pre = root;
inorder(root->right, p);
}
private:
TreeNode *pre = NULL, *suc = NULL;
};

再来看一种更简单的方法,这种方法充分地利用到了 BST 的性质,首先看根节点值和p节点值的大小,如果根节点值大,说明p节点肯定在左子树中,那么此时先将 res 赋为 root,然后 root 移到其左子节点,循环的条件是 root 存在,再比较此时 root 值和p节点值的大小,如果还是 root 值大,重复上面的操作,如果p节点值,那么将 root 移到其右子节点,这样当 root 为空时,res 指向的就是p的后继节点,参见代码如下:

解法三:

class Solution {
public:
TreeNode* inorderSuccessor(TreeNode* root, TreeNode* p) {
TreeNode *res = NULL;
while (root) {
if (root->val > p->val) {
res = root;
root = root->left;
} else root = root->right;
}
return res;
}
};

上面那种方法也可以写成递归形式,写法也比较简洁,但是需要把思路理清,当根节点值小于等于p节点值,说明p的后继节点一定在右子树中,所以对右子节点递归调用此函数,如果根节点值大于p节点值,那么有可能根节点就是p的后继节点,或者左子树中的某个节点是p的后继节点,所以先对左子节点递归调用此函数,如果返回空,说明根节点是后继节点,返回即可,如果不为空,则将那个节点返回,参见代码如下:

解法四:

class Solution {
public:
TreeNode* inorderSuccessor(TreeNode* root, TreeNode* p) {
if (!root) return NULL;
if (root->val <= p->val) {
return inorderSuccessor(root->right, p);
} else {
TreeNode *left = inorderSuccessor(root->left, p);
return left ? left : root;
}
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/285

类似题目:

Binary Search Tree Iterator

Binary Tree Inorder Traversal

Inorder Successor in BST II

参考资料:

https://leetcode.com/problems/inorder-successor-in-bst/

https://leetcode.com/problems/inorder-successor-in-bst/discuss/72653/Share-my-Java-recursive-solution

https://leetcode.com/problems/inorder-successor-in-bst/discuss/72662/*Java*-5ms-short-code-with-explanations

https://leetcode.com/problems/inorder-successor-in-bst/discuss/72656/JavaPython-solution-O(h)-time-and-O(1)-space-iterative

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Inorder Successor in BST 二叉搜索树中的中序后继节点的更多相关文章

  1. [LeetCode] 285. Inorder Successor in BST 二叉搜索树中的中序后继节点

    Given a binary search tree and a node in it, find the in-order successor of that node in the BST. Th ...

  2. [LeetCode] Inorder Successor in BST II 二叉搜索树中的中序后继节点之二

    Given a binary search tree and a node in it, find the in-order successor of that node in the BST. Th ...

  3. [Swift]LeetCode285. 二叉搜索树中的中序后继节点 $ Inorder Successor in BST

    Given a binary search tree and a node in it, find the in-order successor of that node in the BST. Th ...

  4. Leetcode:1305. 两棵二叉搜索树中的所有元素

    Leetcode:1305. 两棵二叉搜索树中的所有元素 Leetcode:1305. 两棵二叉搜索树中的所有元素 思路 BST树中序历遍有序. 利用双指针法可以在\(O(n)\)的复杂度内完成排序. ...

  5. [LeetCode] Kth Smallest Element in a BST 二叉搜索树中的第K小的元素

    Given a binary search tree, write a function kthSmallest to find the kth smallest element in it. Not ...

  6. [LeetCode] 230. Kth Smallest Element in a BST 二叉搜索树中的第K小的元素

    Given a binary search tree, write a function kthSmallest to find the kth smallest element in it. Not ...

  7. 230 Kth Smallest Element in a BST 二叉搜索树中第K小的元素

    给定一个二叉搜索树,编写一个函数kthSmallest来查找其中第k个最小的元素. 注意:你可以假设k总是有效的,1≤ k ≤二叉搜索树元素个数. 进阶:如果经常修改二叉搜索树(插入/删除操作)并且你 ...

  8. LeetCode 230 Kth Smallest Element in a BST 二叉搜索树中的第K个元素

    1.非递归解法 /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * ...

  9. 530.Minimum Absolute Difference in BST 二叉搜索树中的最小差的绝对值

    [抄题]: Given a binary search tree with non-negative values, find the minimum absolute difference betw ...

随机推荐

  1. ORA-01034:ORACLE not available问题的解决方法

    同时在自己电脑上装了oracle客户端和服务器,上次还能用呢,这次突然用不了. [oracle@R39i oracle]$ sqlplus scott/tiger SQL*Plus: Release ...

  2. 移动开发那些坑之——safari mobile click事件的冒泡bug

    今天在iphone6 plus的safari上测试这么一段代码: <script> $(document).on('click','.callApp', function() { aler ...

  3. Basic Tutorials of Redis(4) -Set

    This post will introduce you to some usages of Set in Redis.The Set is a unordered set,it means that ...

  4. js的命名规范

                   js的命名规范   1.驼峰命名法:首字母是小写的,接下来的字母都以大写字符开头.例如: var testValue = 0; var oneValue = 10; 2. ...

  5. 基于SOA分布式架构的dubbo框架基础学习篇

    以需求用例为基,抽象接口,Case&Coding两条线并行,服务(M)&消费(VC)分离,单元.接口.功能.集成四层质量管理,自动化集成.测试.交付全程支持. 3个大阶段(需求分析阶段 ...

  6. 网页mp3语音展示,点击图片放大,点击图片跳转链接,调表格

    查看mp3语音 <td class="value"><embed src="${sounds.soundName}" type="a ...

  7. java基础2.-------interface接口类,实现接口

    1.为什么使用接口,是把功能方法都写在一个类中,在其他需要调用的时候,通过implements实现该接口 2.接口可以继承多个父类接口,在实现接口的时候,实现类实现所有方法 3.在接口类写方法时,自动 ...

  8. 《JS实现复制内容到剪贴板功能,可兼容所有PC浏览器,不兼容手机端》

    前记:本来原生的JS是有提供一个函数来实现这个功能(window.clipboardData),但是很遗憾,这个函数仅仅支持IE和FF浏览器,所以基本用处不大.下边介绍的是一个第三方插件库(ZeroC ...

  9. wamp 服务器安装问题 及cmd常用命令 和 php mysql数据库常用cmd命令集

    1   官网下载wamp软件包,根据提示安装 2   目录结构:   wamp:   bin/为套件目录 包括mysql apache php log   日志记录 alias 配置 apps 数据库 ...

  10. 从DOM操作看Vue&React的前端组件化,顺带补齐React的demo

    前言 接上文:谈谈我对前端组件化中“组件”的理解,顺带写个Vue与React的demo 上次写完博客后,有朋友反应第一内容有点深,看着迷迷糊糊:第二是感觉没什么使用场景,太过业务化,还不如直接写Vue ...