从感知机到 SVM,再到深度学习(三)
这篇博文详细分析了前馈神经网络的内容,它对应的函数,优化过程等等。
在上一篇博文中已经完整讲述了 SVM 的思想和原理。讲到了想用一个高度非线性的曲线作为拟合曲线。比如这个曲线可以是:
\[g(x)=w_3(f_2(w_2(f_1(w_1x_1+b_1))+b2))+b3\]
这个函数的 \(x\), \(b\) 是向量,\(w\) 是矩阵,最后得到的结果是向量。\(f_1\) 和 \(f_2\) 是 sigmoid 函数或者阶跃函数等非线性函数。这里就只复合三层,其实可以一直复合下去。它用一个图表示就是下面的神经网络:
神经网络示意图
这个图中输入层和输出层的每个节点其实只是输入向量 \(x\) 和 \(y(x)\) 的各个维度,而每个隐藏层中的节点就是一个 logistic 回归,当然,这里的激活函数可以不止是 sigmod 函数。而相邻两层间的连接线其实就是 \(w\)。
也就是说,这个神经网络其实就是一个复合而成的高度非线性的函数。所以其中的非线性函数是很重要的,不然的话嵌套多少层,最后的 \(g(x)\) 其实还是线性函数。
那么如果直接对 \(g(x)\) 构造损失函数(比如讲的平方误差之类的)也是可以的。但是优化参数时候很难,用梯度下降法之类的算法都需要求偏导,这个函数太复杂了,求起来会很麻烦。假如就写成这样一个损失函数(具体思想第一篇中讲过了~):
\[
L(w,b) = \frac{1}{n}\sum_{i=1}^{n}(g(x_i) - y(x_i))^2
\]
下面的一些推导都是关于矩阵函数对矩阵或者向量的, 求导后的还是矩阵,所以链式法则的时候相乘的顺序必须是从右向左。
这里面 y(x) 就表示真实的标签,n 是训练样本的数量。然后就是对每个参数求偏导。因为这个是个复合函数,所以求偏导的时候需要用到链式法则。比如这里对 \(w_3\) 的偏导就是:
\[\frac{\partial L(w,b)}{\partial w_3} = \frac{2}{n}\sum_{i=1}^{n}\frac{\partial g(x_i)}{w_3}(g(x_i) - y(x_i)) = \frac{2}{n}\sum_{i=1}^{n}[f_2(w_2(f_1(w_1x_1+b_1))+b2)](g(x_i) - y(x_i))\]
但是如果需要求更深的某一层,比如需要求对 \(w_1\) 的梯度,按照上面的方法用链式法则一层一层求偏导,最后得到关于 \(w_1\) 就非常麻烦了。这里只是三层,如果层次更深情况会更加严重。但是其实我们没有必要求出关于每个参数的偏导的解析解。我们的目的是求出它们的数值。所以根据这个链式法则公式,比如在第 i 层,那么我们可能想求对于 \(w_i\) 和 \(b_i\) 的偏导,也就是:
\[
\frac{\partial J(w,b)}{\partial w_i} = \frac{1}{n}\sum_{i=1}^{n}\frac{\partial (w_iF_i + b_i)}{\partial w_i} \frac{\partial J(w,b)}{\partial (w_iF_i + b_i)} = \frac{1}{n}\sum_{i=1}^{n}F_i \frac{\partial J(w,b)}{\partial (w_iF_i + b_i)}
\]
其中 \(F_i\) 表示 \(f_i(...)\), 其中的省略号是更深的复合函数。这个的值可以把数据 \(x_i\) 带进去得到。关键就是需要计算 \(\frac{\partial J(w,b)}{\partial (w_iF_i + b_i)}\)。但是求导是从外向里一层一层求的,也就是如果我们知道 \(\frac{\partial J(w,b)}{\partial (w_{i+1}F_{i+1} + b_{i+1})}\),那么问题就解决了,因为可以:
\[
\frac{\partial J(w,b)}{\partial (w_iF_i + b_i)} = \frac{\partial F_{i+1}}{\partial (w_iF_i + b_i)}\frac{\partial (w_{i+1}F_{i+1} + b_{i+1})}{\partial F_{i+1}}\frac{\partial J(w,b)}{\partial (w_{i+1}F_{i+1} + b_{i+1})}
\]
这样就是一个递推式了,这里的:
\[
\frac{\partial (w_{i+1}F_{i+1} + b_{i+1})}{\partial F_{i+1}}=w_{i+1}\\
\frac{\partial F_{i+1}}{\partial (w_iF_i + b_i)} = diag(f^{'}_{i}(w_iF_i + b_i))
\]
这里的第二个式子里面 diag 表示对角矩阵的意思,就是主对角线上的值就是 \(f^{'}_{i}(w_iF_i + b_i)\) (i=1,...,m), (m 表示 z_i 的维度)。这是因为上面的函数得到的结果是向量,下面的 \((w_iF_i + b_i)\) 也是向量。而向量函数 \(f(x)\) 对向量 \(x\) 求偏导得到的是矩阵:
\[
\begin{bmatrix}
\frac{\partial f_1}{\partial x_1} &... &\frac{\partial f_m}{\partial x_1} \\
.&... & .\\
.&... & .\\
.&... & .\\
\frac{\partial f_1}{\partial x_1}&... &\frac{\partial f_m}{\partial x_n}
\end{bmatrix}
\]
在这个问题中除了对角线上的偏导之外,其它的值都是 0。
然后用 \(\delta_i\) 表示 \(\frac{\partial J(w,b)}{\partial (w_iF_i + b_i)}\), 那么上面这个递推式就是:
\[
\delta_i=diag(f^{'}_{i}(w_iF_i + b_i))(w_{i+1}^T\delta_{i+1})
\]
其实到这里问题就已经解决了,已经有了计算每一层 \(w_i\) 和 \(b_i\) 的式子,就是:
\[
\frac{\partial J(w,b)}{\partial w_i} = \frac{1}{n}\sum_{i=1}^{n}F_i \delta_i\\
\frac{\partial J(w,b)}{\partial b_i} = \frac{1}{n}\sum_{i=1}^{n} \delta_i
\]
又有了关于 \(\delta\) 的递推式,也就是可以从 \(\delta_{i+1}\) 递推到 \(\delta_i\) ,也就可以把 \(w_i\) 和 \(b_i\) 算出来了。但是 \(\delta_{N}\) (N 为外面的一层)怎么算呢?因为 \(J(w,b)\) 的形式在具体问题中是确定的,可以直接求 \(\delta_{N}=\frac{\partial J(w,b)}{\partial w_NF_N + b_Ni}=\frac{\partial J(w,b)}{\partial g(x)}\) 就行了。
这个就是神经网络中的反向传播算法。为什么叫反向传播呢?如果把这个复合函数 \(L(w,b)\) 还原成神经网络的图像就比较直观了:
这里每个节点都表示一个向量,\(z\) 表示没有经过激活函数的结果,\(a\) 表示经过了激活函数的结果,这样把同一层的节点拆成两个过程。这里 \(\frac{\partial J(w,b)}{\partial z_i}\) 就是之前推导过程中的 \(\frac{\partial J(w,b)}{\partial (w_iF_i + b_i)}\)。整个推导过程可以在这个图中更清晰的表示出来。这篇博文里调参是针对它表示的函数推导的,熟悉了的话就可以直接根据网络的图进行推导,会比较清晰(特别是 LSTM 这些复杂的网络)。关键是要找到那个递推的式子,它其实就是相邻两个层的梯度之间的关系,用链式法则联系起来。
整个流程就是对于某个训练数据 \((x_i, y_i)\), 先正向(从左往右)得到一个预测值 \(f(x_i)\), 带入损失函数 \(J(x, w, b)\) 中。然后用上面的递推方法反向一层一层的计算对于各层参数的梯度以及对于下一层的梯度,最后就能够算出来对于各个参数的梯度。然后利用梯度下降法等方法调整一次参数。这样一次正向,一次反向就调了一次参数。
最后那个损失函数其实有很多可以选择,交叉熵,softmax 等等。用不同的损失函数对于整个调参过程而言,就是算 \(\delta_N\) 的时候不同。这个 \(\delta\) 其实就是损失函数得到的误差,对前面每一层的输出的梯度,整个调参过程就是靠它向前传播。这个就是神经网络中的残差。
这个就是神经网络的基本流程了。但是这个算法如果是浅层的还好,一旦层数变的很多就会带来很多问题:
- 优化的时候计算性能要求很高。所以这个算法在发明的时候并没有特别火,现在随着计算机性能的提高,才有了商业价值。
- 梯度消失。这个是指层数太多的时候,最后几层的参数会调的比较好,所以在反向传播的时候残差会越来越小,以至于前面几层的参数很难调好。所以结果还不如用浅层的。
- 参数过多,很容易陷入局部最优解。
针对这些问题,有很多特殊的神经网络,这些网络的层数可以很深,还有各种特殊的结构。这个就是深度学习。比较常见的有循环神经网络(RNN)、卷积神经网络(CNN)、自编码器等。这些网络结构各有各的优点和用处,但是基本流程和优化方法还是跟神经网络差不多,这里就不赘述了。这个系列到这里就结束了~,自编码器、CNN 之类的以后结合 tensorflow 再写吧。
对机器学习感兴趣的新手或者大牛,如果有觉得对别人有帮助的,高质量的网页,大家可以通过 chrome 插件分享给其他人。在这里安装分享插件。
参考链接:
如需转载,请注明出处.
出处:http://www.cnblogs.com/xinchen1111/p/8793570.html
从感知机到 SVM,再到深度学习(三)的更多相关文章
- [ZZ] 深度学习三巨头之一来清华演讲了,你只需要知道这7点
深度学习三巨头之一来清华演讲了,你只需要知道这7点 http://wemedia.ifeng.com/10939074/wemedia.shtml Yann LeCun还提到了一项FAIR开发的,用于 ...
- 从感知机到 SVM,再到深度学习(一)
在上篇博客中提到,如果想要拟合一些空间中的点,可以用最小二乘法,最小二乘法其实是以样例点和理论值之间的误差最小作为目标.那么换个场景,如果有两类不同的点,而我们不想要拟合这些点,而是想找到一条 ...
- 从感知机到 SVM,再到深度学习(二)
这篇博文承接上一篇,详细推导了 SVM 算法,包括对偶算法,SMO 优化算法,核函数技巧等等,最后还提到用高度非线性的曲线代替超平面,就是神经网络的方法. 在第一篇中已经得到了最优间隔 ...
- go微服务框架go-micro深度学习(三) Registry服务的注册和发现
服务的注册与发现是微服务必不可少的功能,这样系统才能有更高的性能,更高的可用性.go-micro框架的服务发现有自己能用的接口Registry.只要实现这个接口就可以定制自己的服务注册和发现. go- ...
- 转:深度学习斯坦福cs231n 课程笔记
http://blog.csdn.net/dinosoft/article/details/51813615 前言 对于深度学习,新手我推荐先看UFLDL,不做assignment的话,一两个晚上就可 ...
- go微服务框架go-micro深度学习(四) rpc方法调用过程详解
上一篇帖子go微服务框架go-micro深度学习(三) Registry服务的注册和发现详细解释了go-micro是如何做服务注册和发现在,服务端注册server信息,client获取server的地 ...
- go微服务框架go-micro深度学习 rpc方法调用过程详解
摘要: 上一篇帖子go微服务框架go-micro深度学习(三) Registry服务的注册和发现详细解释了go-micro是如何做服务注册和发现在,服务端注册server信息,client获取serv ...
- 20个令人惊叹的深度学习应用(Demo+Paper+Code)
20个令人惊叹的深度学习应用(Demo+Paper+Code) 从计算机视觉到自然语言处理,在过去的几年里,深度学习技术被应用到了数以百计的实际问题中.诸多案例也已经证明,深度学习能让工作比之前做得更 ...
- 【tensorflow:Google】一、深度学习简介
参考文献:<Tensorflow:实战Google深度学习框架> [一]深度学习简介 1.1 深度学习定义 Mitchell对机器学习的定义:任务T上,随着经验E的增加,效果P也可以随之增 ...
随机推荐
- java基础学习系列一
判断语句 1,if条件判断语句 if(){} if(){} else{} if(){}else if(){} else() if判断一共这3张情况.if后面的值是boolen类型 2,switch条件 ...
- 利用spring AOP实现每个请求的日志输出
前提条件: 除了spring相关jar包外,还需要引入aspectj包. <dependency> <groupId>org.aspectj</groupId> & ...
- flex布局简析
最近开始对flex布局进行一个重新的认识. 首先. flex布局适用于所有元素 但是注意一点的就是,一旦父级元素设定flex布局的时候,子元素的传统布局属性, float,clear,vertical ...
- java中最常用jar包的用途说明
java中最常用jar包的用途说明,适合初学者 jar包 用途 axis.jar SOAP引擎包 commons-discovery-0.2.jar 用来发现.查找和实现可插入式接口,提供一些一般类实 ...
- android中xml tools属性详解(转)
第一部分 安卓开发中,在写布局代码的时候,ide可以看到布局的预览效果. 但是有些效果则必须在运行之后才能看见,比如这种情况:TextView在xml中没有设置任何字符,而是在activity中设置了 ...
- Mysql性能优化之覆盖索引
因为我们大多数情况下使用的都是Innodb,所以这篇博客主要依据Innodb来讲 b+树(图片来自网络) b+树图来自网络 1.聚集索引与非聚集索引区别 聚集索引:叶子节点包含完整的数据(物理地址连续 ...
- ReentrantLock 与 AQS 源码分析
ReentrantLock 与 AQS 源码分析 1. 基本结构 重入锁 ReetrantLock,JDK 1.5新增的类,作用与synchronized关键字相当,但比synchronized ...
- 【RabbitMQ系列】 Spring mvc整合RabbitMQ
一.linux下安装rabbitmq 1.安装erlang环境 wget http://erlang.org/download/otp_src_18.2.1.tar.gz tar xvfz otp_s ...
- ssh框架-Struts2(一)
Struts2 概述 用我们自己的话来说: struts是web层框架, 相当于Servlet 作用: 1. 获得请求参数 2. 调用业务 3. 分发转向 常用的WEB层框架 Struts2入门 1. ...
- 《团队-手机app便签-开发文档》
项目托管平台地址:https://github.com/Vcandoit/Notepad.git 我主要负责文件存储部分,文字部分使用sqlite保存. 因为我们想实现备忘录记录照片.语音的功能,所以 ...