Spark技术内幕: Shuffle详解(三)
前两篇文章写了Shuffle Read的一些实现细节。但是要想彻底理清楚这里边的实现逻辑,还是需要更多篇幅的;本篇开始,将按照Job的执行顺序,来讲解Shuffle。即,结果数据(ShuffleMapTask的结果和ResultTask的结果)是如何产生的;结果是如何处理的;结果是如何读取的。
在Worker上接收Task执行命令的是org.apache.spark.executor.CoarseGrainedExecutorBackend。它在接收到LaunchTask的命令后,通过在Driver创建SparkContext时已经创建的org.apache.spark.executor.Executor的实例的launchTask,启动Task:
deflaunchTask(
context: ExecutorBackend, taskId: Long, taskName: String,serializedTask: ByteBuffer) {
val tr = new TaskRunner(context, taskId, taskName, serializedTask)
runningTasks.put(taskId, tr)
threadPool.execute(tr) // 开始在executor中运行
}
最终Task的执行是在org.apache.spark.executor.Executor.TaskRunner#run。org.apache.spark.executor.ExecutorBackend是Executor与Driver通信的接口,它实际上是一个trait:
private[spark] trait ExecutorBackend {
defstatusUpdate(taskId: Long, state: TaskState, data: ByteBuffer)
}
TaskRunner会将Task执行的状态汇报给Driver(org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend.DriverActor)。 而Driver会转给org.apache.spark.scheduler.TaskSchedulerImpl#statusUpdate。
在Executor运行Task时,得到计算结果会存入org.apache.spark.scheduler.DirectTaskResult。在将结果回传到Driver时,会根据结果的大小有不同的策略:对于“较大”的结果,将其以taskid为key存入org.apache.spark.storage.BlockManager;如果结果不大,那么直接回传给Driver。那么如何判定这个阈值呢?
这里的回传是直接通过akka的消息传递机制。因此这个大小首先不能超过这个机制设置的消息的最大值。这个最大值是通过spark.akka.frameSize设置的,单位是Bytes,默认值是10MB。除此之外,还有200KB的预留空间。因此这个阈值就是conf.getInt("spark.akka.frameSize", 10) * 1024 *1024 – 200KB。
// directSend = sending directly back to the driver
val (serializedResult, directSend) = {
if (resultSize >=akkaFrameSize - AkkaUtils.reservedSizeBytes) { //如果结果太大,那么存入BlockManager
val blockId = TaskResultBlockId(taskId)
env.blockManager.putBytes(
blockId, serializedDirectResult,StorageLevel.MEMORY_AND_DISK_SER)
(ser.serialize(new IndirectTaskResult[Any](blockId)), false)
} else { // 如果大小合适,则直接发送结果给Driver
(serializedDirectResult, true)
}
}
execBackend.statusUpdate(taskId, TaskState.FINISHED, serializedResult)
TaskRunner将Task的执行状态汇报给Driver后,Driver会转给org.apache.spark.scheduler.TaskSchedulerImpl#statusUpdate。而在这里不同的状态有不同的处理:
1. 如果类型是TaskState.FINISHED,那么调用org.apache.spark.scheduler.TaskResultGetter#enqueueSuccessfulTask进行处理。
2. 如果类型是TaskState.FAILED或者TaskState.KILLED或者TaskState.LOST,调用org.apache.spark.scheduler.TaskResultGetter#enqueueFailedTask进行处理。对于TaskState.LOST,还需要将其所在的Executor标记为failed, 并且根据更新后的Executor重新调度。
enqueueSuccessfulTask的逻辑也比较简单,就是如果是IndirectTaskResult,那么需要通过blockid来获取结果:sparkEnv.blockManager.getRemoteBytes(blockId);如果是DirectTaskResult,那么结果就无需远程获取了。然后调用
1. org.apache.spark.scheduler.TaskSchedulerImpl#handleSuccessfulTask
2. org.apache.spark.scheduler.TaskSetManager#handleSuccessfulTask
3. org.apache.spark.scheduler.DAGScheduler#taskEnded
4. org.apache.spark.scheduler.DAGScheduler#eventProcessActor
5. org.apache.spark.scheduler.DAGScheduler#handleTaskCompletion
进行处理。核心逻辑都在第5个调用栈。如果task是ResultTask,处理逻辑比较简单,停止job,更新一些状态,发送一些event即可。
if (!job.finished(rt.outputId)){
job.finished(rt.outputId) =true
job.numFinished += 1
// If the whole job hasfinished, remove it
if (job.numFinished ==job.numPartitions) {
markStageAsFinished(stage)
cleanupStateForJobAndIndependentStages(job)
listenerBus.post(SparkListenerJobEnd(job.jobId,JobSucceeded))
}
// taskSucceeded runs someuser code that might throw an exception.
// Make sure we areresilient against that.
try {
job.listener.taskSucceeded(rt.outputId, event.result)
} catch {
case e: Exception =>
// TODO: Perhaps we wantto mark the stage as failed?
job.listener.jobFailed(new SparkDriverExecutionException(e))
}
}
如果task是ShuffleMapTask,那么它需要将结果通过某种机制告诉下游的Stage,以便于其可以作为下游Stage的输入。这个机制是怎么实现的?
实际上,对于ShuffleMapTask来说,其结果实际上是org.apache.spark.scheduler.MapStatus;其序列化后存入了DirectTaskResult或者IndirectTaskResult中。而DAGScheduler#handleTaskCompletion通过下面的方式来获取这个结果:
val status =event.result.asInstanceOf[MapStatus]
通过将这个status注册到org.apache.spark.MapOutputTrackerMaster,就实现了
mapOutputTracker.registerMapOutputs(
stage.shuffleDep.get.shuffleId,
stage.outputLocs.map(list=> if (list.isEmpty) null else list.head).toArray,
changeEpoch = true)
Spark技术内幕: Shuffle详解(三)的更多相关文章
- Spark技术内幕: Shuffle详解(一)
通过上面一系列文章,我们知道在集群启动时,在Standalone模式下,Worker会向Master注册,使得Master可以感知进而管理整个集群:Master通过借助ZK,可以简单的实现HA:而应用 ...
- Spark技术内幕: Shuffle详解(二)
本文主要关注ShuffledRDD的Shuffle Read是如何从其他的node上读取数据的. 上文讲到了获取如何获取的策略都在org.apache.spark.storage.BlockFetch ...
- [Spark内核] 第36课:TaskScheduler内幕天机解密:Spark shell案例运行日志详解、TaskScheduler和SchedulerBackend、FIFO与FAIR、Task运行时本地性算法详解等
本課主題 通过 Spark-shell 窥探程序运行时的状况 TaskScheduler 与 SchedulerBackend 之间的关系 FIFO 与 FAIR 两种调度模式彻底解密 Task 数据 ...
- 前端技术之_CSS详解第三天
前端技术之_CSS详解第三天 二.权重问题深入 2.1 同一个标签,携带了多个类名,有冲突: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 ...
- Spark技术内幕:Stage划分及提交源码分析
http://blog.csdn.net/anzhsoft/article/details/39859463 当触发一个RDD的action后,以count为例,调用关系如下: org.apache. ...
- 前端技术之_CSS详解第一天
前端技术之_CSS详解第一天 一html部分 略.... 二.列表 列表有3种 2.1 无序列表 无序列表,用来表示一个列表的语义,并且每个项目和每个项目之间,是不分先后的. ul就是英语unorde ...
- Spark技术内幕: Task向Executor提交的源码解析
在上文<Spark技术内幕:Stage划分及提交源码分析>中,我们分析了Stage的生成和提交.但是Stage的提交,只是DAGScheduler完成了对DAG的划分,生成了一个计算拓扑, ...
- 前端技术之_CSS详解第四天
前端技术之_CSS详解第四天 一.第三天的小总结 盒模型box model,什么是盒子? 所有的标签都是盒子.无论是div.span.a都是盒子.图片.表单元素一律看做文本. 盒模型有哪些组成: wi ...
- 前端技术之_CSS详解第五天
前端技术之_CSS详解第五天 一.行高和字号 1.1 行高 CSS中,所有的行,都有行高.盒模型的padding,绝对不是直接作用在文字上的,而是作用在“行”上的. <!DOCTYPE html ...
随机推荐
- ●POJ 2828 Buy Tickets
题链: http://poj.org/problem?id=2828 题解: 线段树. 逆向考虑这个过程.最后的序列S共有n个元素. 先看最后一个人,如果他插入到第i位,那么他最终的位置就是当前序列S ...
- 【无语凝噎(wordless)】
·题目: 西施与范蠡泛舟而去……不对,场景不对,咳咳.在甄嬛前往蓬莱洲之前,她与皇上在碧桐书院告别.为了这可能会长达数月的离别,两个人都似乎有很多话要对对方说,却都无语凝噎.这时,皇上 ...
- [bzoj省选十连测推广赛2]T2七彩树
抄自:http://blog.csdn.net/coldef/article/details/61412577 当时看了就不会,看了别人的题解不懂怎么维护,最后抄了个代码....... 给定一棵n个点 ...
- Unix文件系统的主要特点是什么?
1. 树型层次结构 2. 可安装拆卸的文件系统 3. 文件是无结构的字符流式文件 4. Unix文件系统吧外部设备和文件目录作为文件处理
- Linux配置服务器的一点总结
一.Linux初始化服务 首先搞清楚四个概念: 进程:正在运行的程序,有自己独立的内存空间. 线程:是进程的下属单位,开销较进程小,没有自己独立的内存空间. 作业:由一系列进程组成,来完成某一项任务. ...
- jquery 元素控制(追加元素/追加内容)介绍及应用
http://blog.csdn.net/gisredevelopment/article/details/41126533 一.在元素内部/外部追加元素 append,prepend:添加到子元素 ...
- JavaScript进阶-this
1.什么是this? 当一个函数被调用时,会创建一个活动记录(有时候也称为执行上下文).这个记录会包 含函数在哪里被调用(调用栈).函数的调用方法.传入的参数等信息.this 就是记录的 其中一个属性 ...
- Java HttpClient伪造请求之简易封装满足HTTP以及HTTPS请求
HttpClient简介 HTTP 协议可能是现在 Internet 上使用得最多.最重要的协议了,越来越多的 Java 应用程序需要直接通过 HTTP 协议来访问网络资源.虽然在 JDK 的 jav ...
- Java多线程并发工具类
Semaphore-信号灯机制 当我们创建一个可扩展大小的线程池,并且需要在线程池内同时让有限数目的线程并发运行时,就需要用到Semaphore(信号灯机制),Semaphore 通常用于限制可以访问 ...
- Lintcode393 Best Time to Buy and Sell Stock IV solution 题解
[题目描述] Say you have an array for which the i th element is the price of a given stock on day i. Desi ...