Portal

Description

对一个长度为\(n(n\leq2\times10^5)\)的数列\(a\)进行\(m(m\leq5\times10^4)\)次操作,数列初始时为\(\{1,2,...,n\}\)。每次操作交换数列中的两个数\(a_L\)和\(a_R\),并询问此时数列\(a\)中的逆序对数。

Solution

交换\(a_L\)和\(a_R\)时,会影响逆序对数的只有下标在\((L,R)\)之间,数值在\(a_L\)和\(a_R\)之间的数(钦定\(L<R\))。设这样的数有\(k\)个,那么若\(a_L<a_R\),逆序对数会增加\(2k+1\);若\(a_L>a_R\),逆序对数会减少\(2k+1\)。

所以只要使用一种数据结构,支持单点修改和查询区间内数值在某个范围内的数的个数。分块即可解决这个问题。维护每个块内的数有序,那么就可以通过二分查找以\(O(log\sqrt n)\)求出块内满足条件的数的个数。对于修改,修改之后将所在块再次排序即可。

时间复杂度\(O(m\sqrt nlog\sqrt n)。\)

Code

//Anton and Permutation
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long lint;
inline char gc()
{
static char now[1<<16],*S,*T;
if(S==T) {T=(S=now)+fread(now,1,1<<16,stdin); if(S==T) return EOF;}
return *S++;
}
inline int read()
{
int x=0; char ch=gc();
while(ch<'0'||'9'<ch) ch=gc();
while('0'<=ch&&ch<='9') x=x*10+ch-'0',ch=gc();
return x;
}
int const N=2e5+1e3;
int n,m,n0,a[N];
int blk[N],fr[N],to[N],b[N];
int query(int t,int x,int y)
{
int L=upper_bound(b+fr[t],b+to[t]+1,x)-b;
int R=lower_bound(b+fr[t],b+to[t]+1,y)-b-1;
return R-L+1;
}
void update(int t)
{
for(int i=fr[t];i<=to[t];i++) b[i]=a[i];
sort(b+fr[t],b+to[t]+1);
}
int main()
{
n=read(),m=read(); n0=sqrt(n);
for(int i=1;i<=n;i++) a[i]=b[i]=i;
for(int i=1;i<=n;i++) blk[i]=(i-1)/n0+1;
for(int i=1;i<=blk[n];i++) fr[i]=(i-1)*n0+1,to[i]=i*n0;
to[blk[n]]=n;
lint ans=0;
for(int i=1;i<=m;i++)
{
int L=read(),R=read(); if(L>R) swap(L,R);
if(L==R) {printf("%lld\n",ans); continue;}
int x=a[L],y=a[R]; lint res=0,f=1;
if(x>y) swap(x,y),f=-1;
if(blk[L]==blk[R]) for(int i=L;i<=R;i++) res+=(x<a[i]&&a[i]<y);
else
{
for(int i=L;i<=to[blk[L]];i++) res+=(x<a[i]&&a[i]<y);
for(int t=blk[L]+1;t<=blk[R]-1;t++) res+=query(t,x,y);
for(int i=fr[blk[R]];i<=R;i++) res+=(x<a[i]&&a[i]<y);
}
ans+=2*res*f; if(a[L]<a[R]) ans++; else ans--;
swap(a[L],a[R]); update(blk[L]),update(blk[R]);
printf("%lld\n",ans);
}
return 0;
}

P.S.

要用long long来保存逆序对数。

存在\(L=R\)的情况,可以特判一下。

Codeforces785E - Anton and Permutation的更多相关文章

  1. Codeforces Round #404 (Div. 2) E. Anton and Permutation(树状数组套主席树 求出指定数的排名)

    E. Anton and Permutation time limit per test 4 seconds memory limit per test 512 megabytes input sta ...

  2. Anton and Permutation

    Anton and Permutation time limit per test 4 seconds memory limit per test 512 megabytes input standa ...

  3. Codeforces 785 E. Anton and Permutation(分块,树状数组)

    Codeforces 785 E. Anton and Permutation 题目大意:给出n,q.n代表有一个元素从1到n的数组(对应索引1~n),q表示有q个查询.每次查询给出两个数l,r,要求 ...

  4. Codeforces 785E. Anton and Permutation

    题目链接:http://codeforces.com/problemset/problem/785/E 其实可以CDQ分治... 我们只要用一个数据结构支持单点修改,区间查询比一个数大(小)的数字有多 ...

  5. [CF785E]Anton and Permutation

    题目大意:有一串数为$1\sim n(n\leqslant2\times10^5)$,$m(m\leqslant5\times10^4)$次询问,每次问交换位置为$l,r$的两个数后数列中逆序对的个数 ...

  6. Codeforces 785E Anton and Permutation(分块)

    [题目链接] http://codeforces.com/contest/785/problem/E [题目大意] 一个1到n顺序排列的数列,每次选择两个位置的数进行交换,求交换后的数列的逆序对数 [ ...

  7. CodeForces 785E Anton and Permutation 分块

    题意: 有一个\(1 \sim n\)的排列\(A\),有\(q\)个询问: 交换任意两个元素的位置,求交换之后排列的逆序数 分析: 像这种不太容易用线段树,树状数组维护的可以考虑分块 每\(\sqr ...

  8. 【codeforces 785E】Anton and Permutation

    [题目链接]:http://codeforces.com/problemset/problem/785/E [题意] 给你一个初始序列1..n顺序 然后每次让你交换任意两个位置上面的数字; 让你实时输 ...

  9. 题解 CF785E 【Anton and Permutation】

    考虑用分块解决这个题,一次交换对当前逆序对个数的影响是,加上两倍的在区间\([l+1,r-1]\)中比\(a_r\)小的元素个数,减去两倍的在区间\([l+1,r-1]\)中比\(a_l\)小的元素个 ...

随机推荐

  1. wstring操作与普通段字符操作对照表

    字符分类:   宽字符函数普通C函数描述   iswalnum()   isalnum()   测试字符是否为数字或字母   iswalpha()   isalpha()   测试字符是否是字母    ...

  2. sed进阶N;P;D

    案例 sed 的高级替换 $cat file1 why:1 why:2 3 4 5 why:6 why:7 8 why:9 $cat file2 why:1 why:2 3 4 5 why:6 why ...

  3. Jetson TX2刷机教程(原创)

    Jetson TX2刷机教程 一,硬件准备 1台host主机(linux系统,最好是ubuntu64位) 1台Jetson TX2的平台 二,软件包 JetPack(Jetson SDK) 下载地址: ...

  4. Jetson TX2上的demo(原创)

    Jetson TX2上的demo 一.快速傅里叶-海动图 sample The CUDA samples directory is copied to the home directory on th ...

  5. 【视频编解码·学习笔记】4. H.264的码流封装格式

    一.码流封装格式简单介绍: H.264的语法元素进行编码后,生成的输出数据都封装为NAL Unit进行传递,多个NAL Unit的数据组合在一起形成总的输出码流.对于不同的应用场景,NAL规定了一种通 ...

  6. Git 生成 SSH 公钥

    2018-01-05 11:24:04 许多 Git 服务器都使用 SSH 公钥进行认证. 为了向 Git 服务器提供 SSH 公钥,如果某系统用户尚未拥有密钥,必须事先为其生成一份. 这个过程在所有 ...

  7. Python笔记001-----简介及常用的库

    1.Python是一种解释性语言,大部分代码要比编译型语言(如C++,java等)运行要慢点多.2.对于高并发,多线程的应用程序而言,Python并不是理想语言,python有全局解释器锁(Globa ...

  8. 基于tomcat+springMVC搭建基本的前后台交互系统

    一.摘要 1.所需软件列表: 1) tomcat :  apache-tomcat-7.0.54  服务端容器 2) Intellij: Intellij IDEA 14.0.3         开发 ...

  9. python 之协程

    协程: 协程,又称微线程.  是一种用户态的轻量级线程(存在一个线程中,所以没有上下文切换,与同步) 无需线程上下文切换的开销 在线程中,线程切换时需要记住上下文 无需原子操作及同步的开销 没有锁了, ...

  10. dubbo调用负载均衡

    dubbo负载均衡的地址:http://dubbo.io/books/dubbo-user-book/demos/loadbalance.html 随机策略: public class RandomL ...