参照和学习:

https://www.cnblogs.com/AnnieKim/archive/2013/06/15/morristraversal.html

解决的问题:如何使用空间复杂度O(1),来遍历二叉树。

我们通常的办法:是递归或者利用栈的迭代,空间复杂度都为O(logN),虽然已经很完美,但是还有更加美丽和充满艺术感的Morris。

Morris解法:首先要面临的问题是,O(1)的空间,遍历的时候怎么回去(常规方法,是利用栈,和递归存储先前信息的能力),我们所知道的二叉树的叶节点,都有两个空间浪费了,指向NULL。Morris就把这些空间给利用了起来,达到回去的效果。

流程:我们记来到的当前节点为cur。大致分为两步,第二步再分两步,一共三步。

(1)如果cur无左孩子,则cur向右移动。即(cur = cur.right

(2)如果cur有左孩子,则找到cur左子树上最右的节点,记为mostRigth

1、如果mostRight的右指针指向NULL,则让其指向cur,然后cur向左移动。即(cur = cur.left

2、如果mostRight的右指针指向cur,则让其指向NULL,然后cur向右移动。即(cur = cur.right

代码:

package advanced_class_03;

public class Code_01_MorrisTraversal {

	public static void process(Node head) {
if(head == null) {
return;
} // 1
//System.out.println(head.value); process(head.left); // 2
//System.out.println(head.value); process(head.right); // 3
//System.out.println(head.value);
} public static class Node {
public int value;
Node left;
Node right; public Node(int data) {
this.value = data;
}
} public static void morrisIn(Node head) {
if (head == null) {
return;
}
Node cur = head;
Node mostRight = null;
while (cur != null) {
mostRight = cur.left;
if (mostRight != null) { // 如果cur有左孩子
while (mostRight.right != null && mostRight.right != cur) { // 找到cur左子树最右的节点
mostRight = mostRight.right;
}
if (mostRight.right == null) { // 如果mostRight的右指针为空,则让其指向cur,然后cur向左移动
mostRight.right = cur;
cur = cur.left;
continue;
} else {
mostRight.right = null; // 恢复mostRight的右指针
}
}
System.out.print(cur.value + " "); // 打印当前节点
cur = cur.right; // 注意代码的逻辑性,如果cur没有左孩子和mostRight的右指针不为空,都向右走。
}
System.out.println();
} public static void morrisPre(Node head) {
if (head == null) {
return;
}
Node cur = head;
Node mostRight = null;
while (cur != null) {
mostRight = cur.left;
if (mostRight != null) {
while (mostRight.right != null && mostRight.right != cur) {
mostRight = mostRight.right;
}
if (mostRight.right == null) {
mostRight.right = cur;
System.out.print(cur.value + " ");
cur = cur.left;
continue;
} else {
mostRight.right = null;
}
} else {
System.out.print(cur.value + " ");
}
cur = cur.right;
}
System.out.println();
} public static void morrisPos(Node head) {
if (head == null) {
return;
}
Node cur = head;
Node mostRight = null;
while (cur != null) {
mostRight = cur.left;
if (mostRight != null) {
while (mostRight.right != null && mostRight.right != cur) {
mostRight = mostRight.right;
}
if (mostRight.right == null) {
mostRight.right = cur;
cur = cur.left;
continue;
} else {
mostRight.right = null;
printEdge(cur.left);
}
}
cur = cur.right;
}
printEdge(head);
System.out.println();
} public static void printEdge(Node head) {
Node tail = reverseEdge(head);
Node cur = tail;
while (cur != null) {
System.out.print(cur.value + " ");
cur = cur.right;
}
reverseEdge(tail);
} public static Node reverseEdge(Node from) {
Node pre = null;
Node next = null;
while (from != null) {
next = from.right;
from.right = pre;
pre = from;
from = next;
}
return pre;
} // for test -- print tree
public static void printTree(Node head) {
System.out.println("Binary Tree:");
printInOrder(head, 0, "H", 17);
System.out.println();
} public static void printInOrder(Node head, int height, String to, int len) {
if (head == null) {
return;
}
printInOrder(head.right, height + 1, "v", len);
String val = to + head.value + to;
int lenM = val.length();
int lenL = (len - lenM) / 2;
int lenR = len - lenM - lenL;
val = getSpace(lenL) + val + getSpace(lenR);
System.out.println(getSpace(height * len) + val);
printInOrder(head.left, height + 1, "^", len);
} public static String getSpace(int num) {
String space = " ";
StringBuffer buf = new StringBuffer("");
for (int i = 0; i < num; i++) {
buf.append(space);
}
return buf.toString();
} public static void main(String[] args) {
Node head = new Node(4);
head.left = new Node(2);
head.right = new Node(6);
head.left.left = new Node(1);
head.left.right = new Node(3);
head.right.left = new Node(5);
head.right.right = new Node(7);
printTree(head);
morrisIn(head);
morrisPre(head);
morrisPos(head);
printTree(head); } }

Morris遍历-如何用空间复杂度O(1)来遍历二叉树的更多相关文章

  1. 前、中、后序遍历随意两种是否能确定一个二叉树?理由? && 栈和队列的特点和区别

    前序和后序不能确定二叉树理由:前序和后序在本质上都是将父节点与子结点进行分离,但并没有指明左子树和右子树的能力,因此得到这两个序列只能明确父子关系,而不能确定一个二叉树. 由二叉树的中序和前序遍历序列 ...

  2. 【图数据结构的遍历】java实现广度优先和深度优先遍历

    [图数据结构的遍历]java实现广度优先和深度优先遍历 宽度优先搜索(BFS)遍历图需要使用队列queue数据结构: 深度优先搜索(DFS, Depth First Search)的实现 需要使用到栈 ...

  3. C# 遍历枚举(枚举是目的,遍历(获取)是手段)

    C# 遍历枚举   C#中,如何获取(遍历)枚举中所有的值: public enum Suits { Spades, Hearts, Clubs, Diamonds, NumSuits } priva ...

  4. PCB 合拼遍历(全排序+旋转90度) 基本遍历方法

    分享一下PCB合拼的组合的遍历方法,在分享之前先纠正一下 PCB拼板之多款矩形排样算法实现--学习  时间复杂度计算错误  一.PCB 合拼(全排序+旋转90度)的时间复杂度是多少? 二.合拼遍历(全 ...

  5. 数据结构5_java---二叉树,树的建立,树的先序、中序、后序遍历(递归和非递归算法),层次遍历(广度优先遍历),深度优先遍历,树的深度(递归算法)

    1.二叉树的建立 首先,定义数组存储树的data,然后使用list集合将所有的二叉树结点都包含进去,最后给每个父亲结点赋予左右孩子. 需要注意的是:最后一个父亲结点需要单独处理 public stat ...

  6. 帝国cms所有一级栏目遍历,如果有子栏目的话,遍历出来

    所有一级栏目遍历,如果有子栏目的话,遍历出来. 注意下方的bclassid是可以改变的.可以改成自己想要设置的父栏目id. 遍历所有栏目,如果有二级栏目的话显示 [e:loop={"sele ...

  7. java集合中的一个移除数据陷阱(遍历集合自身并同时删除被遍历数据)

    下面是网上的其他解释,更能从本质上解释原因:Iterator 是工作在一个独立的线程中,并且拥有一个 mutex 锁. Iterator 被创建之后会建立一个指向原来对象的单链索引表,当原来的对象数量 ...

  8. Iterator遍历器 调用Symbol.Iterator属性,遍历器对象。

    Iterator实现原理 创建一个指针对象,指向当前数据结构的起始位置.也就是说,遍历器对象本质上,就是一个指针对象. 第一次调用指针对象的next方法,可以将指针指向数据结构的第一个成员. 第二次调 ...

  9. JavaScript中遍历数组 最好不要使用 for in 遍历

    先看一段代码 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UT ...

随机推荐

  1. 第七章 mysql 事务索引以及触发器,视图等等,很重要又难一点点的部分

    [索引] 帮助快速查询 MyISAM ,InnoDB支持btree索引 Memory 支持 btree和hash索引 存储引擎支持 每个表至少16个索引   总索引长度至少256字节   创建索引的优 ...

  2. Caffe 编译后 make runtest 出现locale::facet::_S_create_c_locale 错误

    You might need to append LC_ALL="en_US.UTF-8" to file: /etc/default/locale and reboot your ...

  3. 一个完整的html 每个标签的含义

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  4. PAT1049:Counting Ones

    1049. Counting Ones (30) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue The tas ...

  5. PAT1032: Sharing (25)

    1032. Sharing (25) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue To store Engl ...

  6. redis Web服务器

    redis是一个key-value存储系统.和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).list(链表).set(集合).zset(sorted set ...

  7. InnoDB页压缩技术

    Ⅰ.想起一个报错 1.1 创建表报错 (root@localhost) [(none)]> create tablespace ger_space add datafile 'ger_space ...

  8. balancer.go

    package) , {         close(b.upc)     }     return nil } func getHost(ep string) string {     url, u ...

  9. 终于将 SQL Server 成功迁移至 MySQL8.0 啦!!!

    之前一直使用 SQL Server 作为主数据库而不是 MySQL ,原因之一是单机 SQL Server 性能比 MySQL 强很多,另一个原因是之前客户的系统管理员大多只有 SQL Server ...

  10. USACO JAN14 奶牛冰壶运动 凸包+判定

    满足条件的一定是在凸包内的,直接判断 恬不知耻的加了特判,2333 #include<cstdio> #include<iostream> #include<cstrin ...