Upstream模块是一个很重要的模块,很多其他模块都会使用它来完成对后端服务器的访问,
达到反向代理和负载均衡的效果。例如Fastcgi、Memcached、SessionSticky等。
如果自己实现这部分功能,采用传统的实现方式,很可能会阻塞Nginx降低其性能,因为Nginx是全异步非阻塞的。

所以要想不破坏其优美的架构,就得按照其规范实现很多回调函数,注册这些钩子到Nginx的处理流程中。
下面以一个使用Upstream模块的第三方模块SessionSticky为例,分析一下Upstream模块的执行流程。



一、配置解析

每个模块的入口变量ngx_module_t中,都需要指明:
     一个ngx_command_t数组表示模块可以解析的配置;
     一个module_ctx上下文,注册初始化和合并配置时的回调函数;
     一个解析配置的函数;

Upstream模块的ngx_command_t数组的配置如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
static ngx_command_t  ngx_http_upstream_commands[] = {
 
    { ngx_string("upstream"),
      NGX_HTTP_MAIN_CONF|NGX_CONF_BLOCK|NGX_CONF_TAKE1,
      ngx_http_upstream,
      0,
      0,
      NULL },
 
    { ngx_string("server"),
      NGX_HTTP_UPS_CONF|NGX_CONF_1MORE,
      ngx_http_upstream_server,
      NGX_HTTP_SRV_CONF_OFFSET,
      0,
      NULL },
 
      ngx_null_command
};
 
 
static ngx_http_module_t  ngx_http_upstream_module_ctx = {
    ngx_http_upstream_add_variables,       /* preconfiguration */
    NULL,                                  /* postconfiguration */
 
    ngx_http_upstream_create_main_conf,    /* create main configuration */
    ngx_http_upstream_init_main_conf,      /* init main configuration */
 
    NULL,                                  /* create server configuration */
    NULL,                                  /* merge server configuration */
 
    NULL,                                  /* create location configuration */
    NULL                                   /* merge location configuration */
};
 
 
ngx_module_t  ngx_http_upstream_module = {
    NGX_MODULE_V1,
    &ngx_http_upstream_module_ctx,         /* module context */
    ngx_http_upstream_commands,            /* module directives */
    NGX_HTTP_MODULE,                       /* module type */
    NULL,                                  /* init master */
    NULL,                                  /* init module */
    NULL,                                  /* init process */
    NULL,                                  /* init thread */
    NULL,                                  /* exit thread */
    NULL,                                  /* exit process */
    NULL,                                  /* exit master */
    NGX_MODULE_V1_PADDING
};

1)配置项

从上面的配置可知,Upstream模块可以解析http内的upstream块和块内的server。配置项含义如下,
Nginx就是靠这些选项帮助它找到能解析当前配置的模块:
  • NGX_CONF_TAKE1:配置指令接受1个参数。

  • NGX_CONF_1MORE:配置指令接受至少一个参数。

  • NGX_CONF_BLOCK:配置指令可以接受的值是一个配置信息块。也就是一对大括号括起来的内容。里面可以再包括很多的配置指令。比如常见的server指令就是这个属性的。

  • NGX_HTTP_MAIN_CONF: 可以直接出现在http配置指令里。

  • NGX_HTTP_UPS_CONF: 可以出现在http里面的upstream配置指令里。


2)初始化函数

初始化函数的工作很简单,create函数中为配置分配空间,init函数中会调用peer的init_stream(),
这是Upstream与使用它的模块的第一次交互。其他模块就是通过注册各种回调函数,加入到Upstream处理的生命周期的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
static void *
ngx_http_upstream_create_main_conf(ngx_conf_t *cf)
{
    ngx_http_upstream_main_conf_t  *umcf;
 
    umcf = ngx_pcalloc(cf->pool, sizeof(ngx_http_upstream_main_conf_t));
    if (umcf == NULL) {
        return NULL;
    }
 
    if (ngx_array_init(&umcf->upstreams, cf->pool, 4,
                       sizeof(ngx_http_upstream_srv_conf_t *))
        != NGX_OK)
    {
        return NULL;
    }
 
    return umcf;
}
 
 
static char *
ngx_http_upstream_init_main_conf(ngx_conf_t *cf, void *conf)
{
    ngx_http_upstream_main_conf_t  *umcf = conf;
 
    ngx_uint_t                      i;
    ngx_array_t                     headers_in;
    ngx_hash_key_t                 *hk;
    ngx_hash_init_t                 hash;
    ngx_http_upstream_init_pt       init;
    ngx_http_upstream_header_t     *header;
    ngx_http_upstream_srv_conf_t  **uscfp;
 
    uscfp = umcf->upstreams.elts;
 
    for (i = 0; i < umcf->upstreams.nelts; i++) {
        // 就是在这里回调peer的init_stream()函数
        init = uscfp[i]->peer.init_upstream ? uscfp[i]->peer.init_upstream:
                                            ngx_http_upstream_init_round_robin;
 
        if (init(cf, uscfp[i]) != NGX_OK) {
            return NGX_CONF_ERROR;
        }
    }
 
 
    /* upstream_headers_in_hash */
 
    if (ngx_array_init(&headers_in, cf->temp_pool, 32, sizeof(ngx_hash_key_t))
        != NGX_OK)
    {
        return NGX_CONF_ERROR;
    }
 
    for (header = ngx_http_upstream_headers_in; header->name.len; header++) {
        hk = ngx_array_push(&headers_in);
        if (hk == NULL) {
            return NGX_CONF_ERROR;
        }
 
        hk->key = header->name;
        hk->key_hash = ngx_hash_key_lc(header->name.data, header->name.len);
        hk->value = header;
    }
 
    hash.hash = &umcf->headers_in_hash;
    hash.key = ngx_hash_key_lc;
    hash.max_size = 512;
    hash.bucket_size = ngx_align(64, ngx_cacheline_size);
    hash.name = "upstream_headers_in_hash";
    hash.pool = cf->pool;
    hash.temp_pool = NULL;
 
    if (ngx_hash_init(&hash, headers_in.elts, headers_in.nelts) != NGX_OK) {
        return NGX_CONF_ERROR;
    }
 
    return NGX_CONF_OK;
}


3)解析函数

解析函数解析出ngx_http_upstream_srv_conf_t并保存到全局配置数组中。其他使用Upstream的模块,
会大量使用读取配置,完成自己的功能。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
static char *
ngx_http_upstream(ngx_conf_t *cf, ngx_command_t *cmd, void *dummy)
{
    char                          *rv;
    void                          *mconf;
    ngx_str_t                     *value;
    ngx_url_t                      u;
    ngx_uint_t                     m;
    ngx_conf_t                     pcf;
    ngx_http_module_t             *module;
    ngx_http_conf_ctx_t           *ctx, *http_ctx;
    ngx_http_upstream_srv_conf_t  *uscf;
 
    ngx_memzero(&u, sizeof(ngx_url_t));
 
    value = cf->args->elts;
    u.host = value[1];
    u.no_resolve = 1;
    u.no_port = 1;
 
    uscf = ngx_http_upstream_add(cf, &u, NGX_HTTP_UPSTREAM_CREATE
                                         |NGX_HTTP_UPSTREAM_WEIGHT
                                         |NGX_HTTP_UPSTREAM_MAX_FAILS
                                         |NGX_HTTP_UPSTREAM_FAIL_TIMEOUT
                                         |NGX_HTTP_UPSTREAM_DOWN
                                         |NGX_HTTP_UPSTREAM_BACKUP);
    if (uscf == NULL) {
        return NGX_CONF_ERROR;
    }
 
 
    ctx = ngx_pcalloc(cf->pool, sizeof(ngx_http_conf_ctx_t));
    if (ctx == NULL) {
        return NGX_CONF_ERROR;
    }
 
    http_ctx = cf->ctx;
    ctx->main_conf = http_ctx->main_conf;
 
    /* the upstream{}'s srv_conf */
 
    ctx->srv_conf = ngx_pcalloc(cf->pool, sizeof(void *) * ngx_http_max_module);
    if (ctx->srv_conf == NULL) {
        return NGX_CONF_ERROR;
    }
 
    // 将ngx_http_upstream_srv_conf_t保存到配置数组中,其他模块会读取配置
    ctx->srv_conf[ngx_http_upstream_module.ctx_index] = uscf;
 
    uscf->srv_conf = ctx->srv_conf;
 
 
    /* the upstream{}'s loc_conf */
 
    ctx->loc_conf = ngx_pcalloc(cf->pool, sizeof(void *) * ngx_http_max_module);
    if (ctx->loc_conf == NULL) {
        return NGX_CONF_ERROR;
    }
 
    for (m = 0; ngx_modules[m]; m++) {
        if (ngx_modules[m]->type != NGX_HTTP_MODULE) {
            continue;
        }
 
        module = ngx_modules[m]->ctx;
 
        if (module->create_srv_conf) {
            mconf = module->create_srv_conf(cf);
            if (mconf == NULL) {
                return NGX_CONF_ERROR;
            }
 
            ctx->srv_conf[ngx_modules[m]->ctx_index] = mconf;
        }
 
        if (module->create_loc_conf) {
            mconf = module->create_loc_conf(cf);
            if (mconf == NULL) {
                return NGX_CONF_ERROR;
            }
 
            ctx->loc_conf[ngx_modules[m]->ctx_index] = mconf;
        }
    }
 
 
    /* parse inside upstream{} */
 
    pcf = *cf;
    cf->ctx = ctx;
    cf->cmd_type = NGX_HTTP_UPS_CONF;
 
    rv = ngx_conf_parse(cf, NULL);
 
    *cf = pcf;
 
    if (rv != NGX_CONF_OK) {
        return rv;
    }
 
    if (uscf->servers == NULL) {
        ngx_conf_log_error(NGX_LOG_EMERG, cf, 0,
                           "no servers are inside upstream");
        return NGX_CONF_ERROR;
    }
 
    return rv;
}



二、模块启动

Upstream模块都初始化好了之后,是如何被启动的呢?一般我们是这样使用Upstream模块的:

1
2
3
4
5
6
7
8
9
10
11
12
13
upstream backend {
    session_sticky;
    server www.baidu.com weight=10;
    server www.google.com weight=10;
}
 
server {
    listen 80;
    server_name sessionsticky.com;
    location / {
        proxy_pass http://backend;
    }
}

奥秘模块HttpProxyModule中,此Handler模块解析proxy_pass,配置如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
static ngx_command_t  ngx_http_proxy_commands[] = {
 
    { ngx_string("proxy_pass"),
      NGX_HTTP_LOC_CONF|NGX_HTTP_LIF_CONF|NGX_HTTP_LMT_CONF|NGX_CONF_TAKE1,
      ngx_http_proxy_pass,
      NGX_HTTP_LOC_CONF_OFFSET,
      0,
      NULL },
      ......
}
 
static char *
ngx_http_proxy_pass(ngx_conf_t *cf, ngx_command_t *cmd, void *conf)
{
    ngx_http_proxy_loc_conf_t *plcf = conf;
 
    size_t                      add;
    u_short                     port;
    ngx_str_t                  *value, *url;
    ngx_url_t                   u;
    ngx_uint_t                  n;
    ngx_http_core_loc_conf_t   *clcf;
    ngx_http_script_compile_t   sc;
 
    if (plcf->upstream.upstream || plcf->proxy_lengths) {
        return "is duplicate";
    }
 
    clcf = ngx_http_conf_get_module_loc_conf(cf, ngx_http_core_module);
     
    // 注册Handler的处理函数
    clcf->handler = ngx_http_proxy_handler;
 
    .......
    return NGX_CONF_OK;
}

解析函数中注册的Handler处理函数ngx_http_proxy_handler(),在调用ngx_http_read_client_request_body()时
将ngx_http_upstream_init传入,作为接收客户端请求体的后处理函数。这样每次从客户端读取完请求Body后,
都会回调Upstream的init函数。

注意Nginx与Squid的区别,Nginx会将请求体全部读取完后再进行后续处理。而Squid会边读边转发。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
static ngx_int_t
ngx_http_proxy_handler(ngx_http_request_t *r)
{
    ngx_int_t                   rc;
    ngx_http_upstream_t        *u;
    ngx_http_proxy_ctx_t       *ctx;
    ngx_http_proxy_loc_conf_t  *plcf;
 
    if (ngx_http_upstream_create(r) != NGX_OK) {
        return NGX_HTTP_INTERNAL_SERVER_ERROR;
    }
 
    ctx = ngx_pcalloc(r->pool, sizeof(ngx_http_proxy_ctx_t));
    if (ctx == NULL) {
        return NGX_ERROR;
    }
 
    ngx_http_set_ctx(r, ctx, ngx_http_proxy_module);
 
    plcf = ngx_http_get_module_loc_conf(r, ngx_http_proxy_module);
 
    u = r->upstream;
 
    if (plcf->proxy_lengths == NULL) {
        ctx->vars = plcf->vars;
        u->schema = plcf->vars.schema;
#if (NGX_HTTP_SSL)
        u->ssl = (plcf->upstream.ssl != NULL);
#endif
 
    else {
        if (ngx_http_proxy_eval(r, ctx, plcf) != NGX_OK) {
            return NGX_HTTP_INTERNAL_SERVER_ERROR;
        }
    }
 
    u->output.tag = (ngx_buf_tag_t) &ngx_http_proxy_module;
 
    u->conf = &plcf->upstream;
 
    //以下就是HttpProxyModule注册的默认的回调函数
#if (NGX_HTTP_CACHE)
    u->create_key = ngx_http_proxy_create_key;
#endif
    u->create_request = ngx_http_proxy_create_request;
    u->reinit_request = ngx_http_proxy_reinit_request;
    u->process_header = ngx_http_proxy_process_status_line;
    u->abort_request = ngx_http_proxy_abort_request;
    u->finalize_request = ngx_http_proxy_finalize_request;
    r->state = 0;
 
    if (plcf->redirects) {
        u->rewrite_redirect = ngx_http_proxy_rewrite_redirect;
    }
 
    if (plcf->cookie_domains || plcf->cookie_paths) {
        u->rewrite_cookie = ngx_http_proxy_rewrite_cookie;
    }
 
    u->buffering = plcf->upstream.buffering;
 
    u->pipe = ngx_pcalloc(r->pool, sizeof(ngx_event_pipe_t));
    if (u->pipe == NULL) {
        return NGX_HTTP_INTERNAL_SERVER_ERROR;
    }
 
    u->pipe->input_filter = ngx_http_proxy_copy_filter;
    u->pipe->input_ctx = r;
 
    u->input_filter_init = ngx_http_proxy_input_filter_init;
    u->input_filter = ngx_http_proxy_non_buffered_copy_filter;
    u->input_filter_ctx = r;
 
    u->accel = 1;
 
    // 在这里注册ngx_http_upstream_init回调函数,读取完请求体后就会触发
    rc = ngx_http_read_client_request_body(r, ngx_http_upstream_init);
 
    if (rc >= NGX_HTTP_SPECIAL_RESPONSE) {
        return rc;
    }
 
    return NGX_DONE;
}


Nginx Upstream模块源码分析(上)的更多相关文章

  1. nginx健康检查模块源码分析

    nginx健康检查模块 本文所说的nginx健康检查模块是指nginx_upstream_check_module模块.nginx_upstream_check_module模块是Taobao定制的用 ...

  2. Spark Scheduler模块源码分析之TaskScheduler和SchedulerBackend

    本文是Scheduler模块源码分析的第二篇,第一篇Spark Scheduler模块源码分析之DAGScheduler主要分析了DAGScheduler.本文接下来结合Spark-1.6.0的源码继 ...

  3. Spark Scheduler模块源码分析之DAGScheduler

    本文主要结合Spark-1.6.0的源码,对Spark中任务调度模块的执行过程进行分析.Spark Application在遇到Action操作时才会真正的提交任务并进行计算.这时Spark会根据Ac ...

  4. Zepto事件模块源码分析

    Zepto事件模块源码分析 一.保存事件数据的handlers 我们知道js原生api中要移除事件,需要传入绑定时的回调函数.而Zepto则可以不传入回调函数,直接移除对应类型的所有事件.原因就在于Z ...

  5. Django(51)drf渲染模块源码分析

    前言 渲染模块的原理和解析模块是一样,drf默认的渲染有2种方式,一种是json格式,另一种是模板方式. 渲染模块源码入口 入口:APIView类中dispatch方法中的:self.response ...

  6. Django(48)drf请求模块源码分析

    前言 APIView中的dispatch是整个请求生命过程的核心方法,包含了请求模块,权限验证,异常模块和响应模块,我们先来介绍请求模块 请求模块:request对象 源码入口 APIView类中di ...

  7. Django(49)drf解析模块源码分析

    前言 上一篇分析了请求模块的源码,如下: def initialize_request(self, request, *args, **kwargs): """ Retu ...

  8. Fabric2.2中的Raft共识模块源码分析

    引言 Hyperledger Fabric是当前比较流行的一种联盟链系统,它隶属于Linux基金会在2015年创建的超级账本项目且是这个项目最重要的一个子项目.目前,与Hyperledger的另外几个 ...

  9. SpringBoot事件监听机制源码分析(上) SpringBoot源码(九)

    SpringBoot中文注释项目Github地址: https://github.com/yuanmabiji/spring-boot-2.1.0.RELEASE 本篇接 SpringApplicat ...

随机推荐

  1. Codeforces Round #411 (Div. 2)

    来自FallDream的博客,未经允许,请勿转载,谢谢. 由于人傻又菜 所以这次又滚去div2了  一堆结论题真的可怕 看见E题不是很有思路   然后就去大力搞F题  T了最后一个点 真的绝望   但 ...

  2. day4 liaoxuefeng---模块

    一.模块 二.常用内建模块 三.常用第三方模块

  3. URL、网址、域名

    URL (Uniform Resource Locator)统一资源定位符是对可以从互联网上得到的资源的位置和访问方法的一种简洁的表示,是互联网上标准资源的地址.互联网上的每个文件都有一个唯一的URL ...

  4. URI与URL

    为了区分URI与URL,我们要引入URN URI = Universal Resource Identifier 统一资源标志符URL = Universal Resource Locator 统一资 ...

  5. text-align:center属性失效

    text-align:center只对inline元素有效,失效的情况下 给它所有的子元素加上 display:inline-block即可 inline-block不兼容ie6

  6. 开源Spring解决方案--lm.solution

    Github 项目地址: https://github.com/liumeng0403/lm.solution 一.说明 1.本项目未按java项目传统命名方式命名项目名,包名 如:org.xxxx. ...

  7. 基本数据类型 异常 数组排序 JVM区域划分

               Day01 1.基本数据类型各占几个字节 Byte 1 short2 int4 long8 float4 double6 char2 boolean1 Byte b1=3,b2= ...

  8. c#下winform的ftp上传

    /* FTPFactory.cs Better view with tab space=4 Written by Jaimon Mathew (jaimonmathew@rediffmail.com) ...

  9. VS2010 win7 64位安装后新建项目生成时错误:LINK : fatal error LNK1123: 转换到 COFF 期间失败: 文件无效或损坏

    解决方案:VS2010在经历一些更新后,建立Win32 Console Project时会出“error LNK1123” 错误,解决方案为将 项目|项目属性|配置属性|清单工具|输入和输出|嵌入清单 ...

  10. Android的四大组件及应用安装安全问题(4)

    Android的四大组件及组件间通信 如果想对四大组件有深入的了解,那永远不要停留在一些条条干干的SDK API的认识,需要了解他的通讯,他的复用,他的边界问题,这样才会对四大组件有透明的认识. 四大 ...