1444: [Jsoi2009]有趣的游戏

题意:每种字母出现概率\(p_i\),有一些长度len的字符串,求他们出现的概率


套路DP的话,\(f[i][j]\) i个字符走到节点j的概率,建出转移矩阵来矩乘几十次可以认为是无穷个字符,就得到概率了

但我们发现Trie图也是图啊,直接高斯消元就好了,\(f[i]\)表示走到节点i的期望次数

注意\(f[0]\)需要+1

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=105;
const double eps=1e-8;
inline int read(){
char c=getchar();int x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
} int n, len, m, pos[N]; double p[N], x, y;
char s[N];
namespace ac{
struct meow{int ch[11], fail, val;} t[N];
int sz;
void insert(char *s, int id) {
int u=0;
for(int i=1; i<=len; i++) {
int c=s[i]-'A';
if(!t[u].ch[c]) t[u].ch[c] = ++sz;
u=t[u].ch[c];
}
t[u].val=1;
pos[id]=u;
} int q[N], head, tail;
void build() {
head=tail=1;
for(int i=0; i<m; i++) if(t[0].ch[i]) q[tail++] = t[0].ch[i];
while(head!=tail) {
int u=q[head++];
t[u].val |= t[t[u].fail].val;
for(int i=0; i<m; i++) {
int &v = t[u].ch[i];
if(!v) v = t[t[u].fail].ch[i];
else t[v].fail = t[t[u].fail].ch[i], q[tail++]=v;
}
}
}
}using ac::t; using ac::sz; double a[N][N];
namespace eq{
void build() {
a[0][sz+1] = 1;
for(int i=0; i<=sz; i++) { //printf("i %d\n",i);
a[i][i]=1;
if(!t[i].val) for(int j=0; j<m; j++)
a[ t[i].ch[j] ][i] -= p[j];// printf("ch %d %lf %d\n",j,p[j],t[i].ch[j]);
}
//for(int i=0; i<=n; i++) for(int j=0; j<=n+1; j++) printf("%lf%c",a[i][j],j==n+1?'\n':' ');
} void gauss(int n) {
for(int i=0; i<=n; i++) {
int r=i;
for(int j=i; j<=n; j++) if(abs(a[j][i])>abs(a[r][i])) r=j;
if(r!=i) for(int j=0; j<=n+1; j++) swap(a[r][j], a[i][j]); for(int k=i+1; k<=n; k++) {
double t = a[k][i]/a[i][i];
for(int j=i; j<=n+1; j++) a[k][j] -= t*a[i][j];
}
}
for(int i=n; i>=0; i--) {
for(int j=n; j>i; j--) a[i][n+1] -= a[i][j]*a[j][n+1];
a[i][n+1] /= a[i][i];
}
}
}
int main() {
freopen("in","r",stdin);
n=read(); len=read(); m=read();
int flag=0;
for(int i=0; i<m; i++) x=read(), y=read(), p[i]=(double)x/y, flag |= p[i]>eps;
if(!flag) {for(int i=1; i<=n; i++) puts("0.00"); return 0;} for(int i=1; i<=n; i++) scanf("%s",s+1), ac::insert(s, i);
ac::build();
eq::build(); eq::gauss(sz);
//for(int i=1; i<=n; i++) printf("%d ",pos[i]); puts(" pos");
for(int i=1; i<=n; i++) printf("%.2lf\n", a[pos[i]][sz+1]);
}

BZOJ 1444: [Jsoi2009]有趣的游戏 [AC自动机 高斯消元]的更多相关文章

  1. BZOJ 1444 [Jsoi2009]有趣的游戏 (AC自动机 + 概率DP + Gauss)

    1444: [Jsoi2009]有趣的游戏 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1382  Solved: 498[Submit][Statu ...

  2. BZOJ 1444 [JSOI2009]有趣的游戏 (AC自动机、概率与期望DP、矩阵乘法)

    诶这题洛谷居然没有??? 题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1444 题解: 我见到主要有三种做法. 一是矩阵乘法.设\(d ...

  3. BZOJ 1444: [Jsoi2009]有趣的游戏 AC自动机+概率与期望+矩阵乘法

    这道题还比较友好~首先,构建出来 $AC$ 自动机,那么我们要求的就是从 $0$ 号点走无限次走到一个终止节点的概率. 考虑构建转移矩阵 $M,$ $M_{i,j}$ 表示节点 $i$ 转移到节点 $ ...

  4. BZOJ 1444:[JSOI2009]有趣的游戏

    BZOJ 1444:[JSOI2009]有趣的游戏 题目链接 首先我们建出Trie图,然后高斯消元. 我们设\(f_i\)表示经过第\(i\)个点的期望次数: \[ f_x=\sum i\cdot p ...

  5. hdu 5955 Guessing the Dice Roll 【AC自动机+高斯消元】

    hdu 5955 Guessing the Dice Roll [AC自动机+高斯消元] 题意:给出 n≤10 个长为 L≤10 的串,每次丢一个骰子,先出现的串赢,问获胜概率. 题解:裸的AC自动机 ...

  6. BZOJ:4820: [Sdoi2017]硬币游戏&&BZOJ:1444: [Jsoi2009]有趣的游戏(高斯消元求概率)

    1444: [Jsoi2009]有趣的游戏 4820: [Sdoi2017]硬币游戏 这两道题都是关于不断随机生成字符后求出现给定字符串的概率的问题. 第一题数据范围较小,将串建成AC自动机以后,以A ...

  7. bzoj 1444: [Jsoi2009]有趣的游戏【AC自动机+dp+高斯消元】

    https://blog.sengxian.com/solutions/bzoj-1444 orz 一直是我想错了,建出AC自动机之后,实际上这个定义是设f[i]为经过i节点的 * 期望次数 * ,因 ...

  8. 【BZOJ1444】[Jsoi2009]有趣的游戏 AC自动机+概率DP+矩阵乘法

    [BZOJ1444][Jsoi2009]有趣的游戏 Description Input 注意 是0<=P Output Sample Input Sample Output HINT  30%的 ...

  9. ●BZOJ 1444 [Jsoi2009]有趣的游戏

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1444题解.1: 概率dp,矩阵乘法,快速幂. 对所有串建立AC自动机, 那么如果在trie树 ...

随机推荐

  1. 详解:Python2中的urllib、urllib2与Python3中的urllib以及第三方模块requests

    在python2中,urllib和urllib2都是接受URL请求的相关模块,但是提供了不同的功能.两个最显著的不同如下: 1.urllib2可以接受一个Request类的实例来设置URL请求的hea ...

  2. Linux下采用VI编辑器删除复制或移动多行文本内容

    一.删除多行 单行删除,:1(待删除行号)d 多行删除,:1,10d dd 删除光标所在行ndd删除以当前行开始的n行dw删除以当前字符开始的一个字符ndw删除以当前字符开始的n个字符d$.D删除以当 ...

  3. JS——判断一个对象是否为空

    判断一个对象是否为空对象,本文给出三种判断方法: 1.最常见的思路,for...in...遍历属性,为真则为"非空数组":否则为"空数组" 2.通过JSON自带 ...

  4. [国嵌攻略][045-046][一跃进入C大门]

    [一跃进入C大门] 跳转方式 1.相对跳转:b或bl指令,通过计算两个地址之间的差值来给pc赋值相对跳转 2.绝对跳转:ldr指令,通过给pc直接赋值,完成绝对跳转 代码编写 1.在汇编代码中直接使用 ...

  5. Sqoop导入导出的几个例子

    Sqoop导入导出的几个例子 http://sqoop.apache.org/docs/1.4.6/SqoopUserGuide.html#_importing_data_into_hive   no ...

  6. PHP性能分析工具xhprof的安装使用与注意事项

    前言 xhprof由facebook开源出来的一个PHP性能监控工具,占用资源很少,甚至能够在生产环境中进行部署. 它可以结合graphviz使用,能够以图片的形式很直观的展示代码执行耗时. 下面主要 ...

  7. 《并行程序设计导论》——OpenMP

    OpenMP看着很好,实际上坑很多. 如果真的要求性能和利用率,还是专门写代码吧.而且MS的VS里只有2.X的版本.

  8. 《HelloGitHub》第 22 期

    公告 年前最后一期,下次就是年后了,老时间 每月的 28 号,年后见- <HelloGitHub>第 22 期 兴趣是最好的老师,HelloGitHub 就是帮你找到兴趣! 简介 分享 G ...

  9. 【笔记】css浮动的一些个人见解

    看<css 权威指南>已经有差不多两个月时间了,正好最近读到浮动这一章写一写个人对立面的概念的一些见解吧. 说之前还真不得不说这本书卖之前以为会说得通俗易懂读后才发现其实有些概念从文意上理 ...

  10. linux libpcap的性能问题,请大家注意绕行。

    内核代码中,ip_rcv是ip层收包的主入口函数,该函数由软中断调用.存放数据包的sk_buff结构包含有目的地ip和端口信息,此时ip层进行检查,如果目的地ip不是本机,且没有开启转发的话,则将包丢 ...