BZOJ 3771: Triple [快速傅里叶变换 生成函数 容斥原理]
题意:n个物品,可以用1/2/3个不同的物品组成不同的价值,求每种价值有多少种方案(顺序不同算一种)
【生成函数】:
构造这么一个多项式函数g(x),使得n次项系数为a[n]。
普通型生成函数用于解决多重集的组合问题
生成函数的x无实际意义 通常可以化为一个简单的式子
组合数的生成函数 A(x)=(1+x)^n C(n,k)=a[k] 可以这么想,一次要么选择1要么选择x,选择x系数就会+1
生成函数系数为方案数,次数为价值
A(x) 选一个
B(x) A每项平方 选两个
C(x) A每项三次方 选三个
然后容斥原理算答案 听好想的看代码吧
注意计算的时候可以一直用点值,最后在再IDFT变系数表示
#include <iostream>
#include <cstdio>
#include <string>
#include <algorithm>
#include <cmath>
using namespace std;
const int N=+;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
const double PI=acos(-);
struct Vector{
double x,y;
Vector(double a=,double b=):x(a),y(b){}
};
typedef Vector CD;
Vector operator +(Vector a,Vector b){return Vector(a.x+b.x,a.y+b.y);}
Vector operator -(Vector a,Vector b){return Vector(a.x-b.x,a.y-b.y);}
Vector operator *(Vector a,Vector b){return Vector(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);}
Vector operator *(Vector a,double b){return Vector(a.x*b,a.y*b);}
Vector operator /(Vector a,double b){return Vector(a.x/b,a.y/b);}
Vector conj(Vector a){return Vector(a.x,-a.y);} struct FastFourierTransform{
int n,rev[N];
CD omega[N],omegaInv[N];
void ini(int m){
n=;
while(n<m) n<<=;
for(int k=;k<n;k++)
omega[k]=CD(cos(*PI/n*k),sin(*PI/n*k)),
omegaInv[k]=conj(omega[k]);
int k=;
while((<<k)<n) k++;
for(int i=;i<n;i++){
int t=;
for(int j=;j<k;j++) if(i&(<<j)) t|=(<<(k-j-));
rev[i]=t;
}
}
void transform(CD *a,CD *omega){
for(int i=;i<n;i++) if(i<rev[i]) swap(a[i],a[rev[i]]);
for(int l=;l<=n;l<<=){
int m=l>>;
for(CD *p=a;p!=a+n;p+=l)
for(int k=;k<m;k++){
CD t=omega[n/l*k]*p[k+m];
p[k+m]=p[k]-t;
p[k]=p[k]+t;
}
}
}
void DFT(CD *a,int flag){
if(flag==) transform(a,omega);
else{
transform(a,omegaInv);
for(int i=;i<n;i++) a[i].x/=(double)n;
}
}
}fft;
int n,m,w;
CD A[N],B[N],C[N],ans[N];
int main(){
freopen("in","r",stdin);
n=read();
for(int i=;i<=n;i++){
w=read(); m=max(m,w);
A[w].x=;
B[w*].x=;
C[w*].x=;
}
m=m*;
fft.ini(m);
fft.DFT(A,);fft.DFT(B,);fft.DFT(C,); for(int i=;i<fft.n;i++)
ans[i]=ans[i]+A[i]+(A[i]*A[i]-B[i])/2.0+(A[i]*A[i]*A[i]-3.0*A[i]*B[i]+2.0*C[i])/6.0;
fft.DFT(ans,-);
for(int i=;i<m;i++) if(int(ans[i].x+0.5)) printf("%d %d\n",i,int(ans[i].x+0.5));
}
BZOJ 3771: Triple [快速傅里叶变换 生成函数 容斥原理]的更多相关文章
- bzoj 3771: Triple 快速傅里叶变换 FFT
题目大意: 给出\(n\)个互不相同的物品,每个物品有价值\(x_i(x_i \leq 40000)\)如果可以从中取一个或两个或三个物品.问能够组合出来的所有价值和对应的方案数,全部输出.取值时,\ ...
- [BZOJ 3771] Triple(FFT+容斥原理+生成函数)
[BZOJ 3771] Triple(FFT+生成函数) 题面 给出 n个物品,价值为别为\(w_i\)且各不相同,现在可以取1个.2个或3个,问每种价值和有几种情况? 分析 这种计数问题容易想到生成 ...
- bzoj 3771: Triple【生成函数+FFT+容斥原理】
瞎搞居然1A,真是吃鲸 n的范围只有聪明人能看见--建议读题3遍 首先看计数就想到生成函数,列出多项式A(x),然后分别考虑123 对于选一个的直接计数即可: 对于选两个的,\( A(x)^2 \), ...
- bzoj 3771 Triple FFT 生成函数+容斥
Triple Time Limit: 20 Sec Memory Limit: 64 MBSubmit: 847 Solved: 482[Submit][Status][Discuss] Desc ...
- BZOJ 3771 Triple FFT+容斥原理
解析: 这东西其实就是指数型母函数? 所以刚开始读入的值我们都把它前面的系数置为1. 然后其实就是个多项式乘法了. 最大范围显然是读入的值中的最大值乘三,对于本题的话是12W? 用FFT优化的话,达到 ...
- BZOJ 3771: Triple(生成函数 FFT)
Time Limit: 20 Sec Memory Limit: 64 MBSubmit: 911 Solved: 528[Submit][Status][Discuss] Description ...
- BZOJ 3771: Triple
Description 问所有三/二/一元组可能形成的组合. Sol FFT. 利用生成函数直接FFT一下,然后就是计算,计算的时候简单的容斥一下. 任意三个-3*两个相同的+2*全部相同的+任意两个 ...
- bzoj 3771 Triple——FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3771 把方案作为系数.值作为指数,两项相乘就是系数相乘.指数相加,符合意义. 考虑去重.先自 ...
- bzoj 3771 Triple —— FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3771 令多项式的系数是方案数,次数是值: 设 a(x) 为一个物品的多项式,即 a[w[i] ...
随机推荐
- struts中用kindeditor实现的图片上传并且显示在页面上
做公司网站的时候由于需要在内容属性中加入图片,所以就有了这个问题,本来一开始找几篇文章看都是讲修改kindeditor/jsp/file_manager_json.jsp和upload_json.js ...
- Java的语言特点详解
1)简单性:java从C++简化而来,设计者们把C++语言中许多可用的特征去掉了,这些特征是一般程序员很少使用的.java还剔除了C++操作符过载和指针操作. 2)面向对象:java是一个面向对象的语 ...
- 注意SSIS中的DT_NUMERIC类型转换为字符类型(比如DT_WSTR)时,会截断小数点前的0
我们知道SSIS中有许多数据类型,如下图所示: 但是DT_NUMERIC这个类型有个陷进要注意,我们来做个实验,随便定义一个String类型的SSIS包变量,然后打开该变量表达式窗口: 在变量表达式窗 ...
- input[type=file]中使用ajaxSubmit来图片上传
今天在使用input[type=file]上传图片到服务器时,因为项目要求,并不是像常见的通过按钮来提交表单事件,而是图片上传后就自动执行表单提交事件,将上传的图片信息传给服务器. 刚开始我是这样执行 ...
- 在阿里云服务器上安装完成并启动Tomcat后,通过http不能访问--解决办法
在阿里云服务器上安装完成并启动Tomcat后,通过http不能访问的原因是阿里云平台为了安全设置了安全组策略,必须我们授权的端口,其他计算机才能通过http访问 解决办法:(这里以阿里轻量应用服务器为 ...
- MLlib--决策树
转载请标明出处http://www.cnblogs.com/haozhengfei/p/d65ab6ccff684db729f44a947ac9e7da.html 决策树 1.什么是决策树 决策 ...
- Oracle_数据库表的约束
Oracle_数据库表的约束 完整性约束分类 域完整性约束 (非空not null,检查check) 实体完整性约束 (唯一unique,主键primary key) 参照完整性约束 (外键forei ...
- CentOS、Ubuntu、Debian三个linux比较异同[转]
Linux有非常多的发行版本,从性质上划分,大体分为由商业公司维护的商业版本与由开源社区维护的免费发行版本. 商业版本以Redhat为代表,开源社区版本则以debian为代表.这些版本各有不同的特点, ...
- PHP截取中英文字符串
//如果字符串长度超过10,则截取并以省略号结尾 function sub($str){ $str=(string)$str; if( mb_strlen($str,'utf-8') >10){ ...
- thinkphp5自动完成