Intersecting Lines
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 15145   Accepted: 6640

Description

We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line because they are on top of one another (i.e. they are the same line), 3) intersect in a point. In this problem you will use your algebraic knowledge to create a program that determines how and where two lines intersect. 
Your program will repeatedly read in four points that define two lines in the x-y plane and determine how and where the lines intersect. All numbers required by this problem will be reasonable, say between -1000 and 1000. 

Input

The first line contains an integer N between 1 and 10 describing how many pairs of lines are represented. The next N lines will each contain eight integers. These integers represent the coordinates of four points on the plane in the order x1y1x2y2x3y3x4y4. Thus each of these input lines represents two lines on the plane: the line through (x1,y1) and (x2,y2) and the line through (x3,y3) and (x4,y4). The point (x1,y1) is always distinct from (x2,y2). Likewise with (x3,y3) and (x4,y4).

Output

There should be N+2 lines of output. The first line of output should read INTERSECTING LINES OUTPUT. There will then be one line of output for each pair of planar lines represented by a line of input, describing how the lines intersect: none, line, or point. If the intersection is a point then your program should output the x and y coordinates of the point, correct to two decimal places. The final line of output should read "END OF OUTPUT". 

Sample Input

5
0 0 4 4 0 4 4 0
5 0 7 6 1 0 2 3
5 0 7 6 3 -6 4 -3
2 0 2 27 1 5 18 5
0 3 4 0 1 2 2 5

Sample Output

INTERSECTING LINES OUTPUT
POINT 2.00 2.00
NONE
LINE
POINT 2.00 5.00
POINT 1.07 2.20
END OF OUTPUT

Source


呵呵 这种裸题...
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std;
typedef long long ll;
const double eps=1e-;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
}
inline int sgn(double x){
if(abs(x)<eps) return ;
else return x<?-:;
}
struct Vector{
double x,y;
Vector(double a=,double b=):x(a),y(b){}
bool operator <(const Vector &a)const{
return x<a.x||(x==a.x&&y<a.y);
}
void print(){
printf("%lf %lf\n",x,y);
}
};
typedef Vector Point;
Vector operator +(Vector a,Vector b){return Vector(a.x+b.x,a.y+b.y);}
Vector operator -(Vector a,Vector b){return Vector(a.x-b.x,a.y-b.y);}
Vector operator *(Vector a,double b){return Vector(a.x*b,a.y*b);}
Vector operator /(Vector a,double b){return Vector(a.x/b,a.y/b);}
bool operator ==(Vector a,Vector b){return sgn(a.x-b.x)==&&sgn(a.y-b.y)==;} double Cross(Vector a,Vector b){
return a.x*b.y-a.y*b.x;
}
double Dot(Vector a,Vector b){
return a.x*b.x+a.y*b.y;
}
double DisPP(Point a,Point b){
Point t=a-b;
return sqrt(t.x*t.x+t.y*t.y);
}
struct Line{
Point s,t;
Line(){}
Line(Point p,Point v):s(p),t(v){}
};
bool isLSI(Line l1,Line l2){
Vector v=l1.t-l1.s,u=l2.s-l1.s,w=l2.t-l1.s;
return sgn(Cross(v,u))!=sgn(Cross(v,w));
}
bool isSSI(Line l1,Line l2){
return isLSI(l1,l2)&&isLSI(l2,l1);
}
Point LI(Line a,Line b){
Vector v=a.s-b.s,v1=a.t-a.s,v2=b.t-b.s;
double t=Cross(v2,v)/Cross(v1,v2);
return a.s+v1*t;
}
double x,y,x2,y2;
Line l1,l2;
void solve(){
if(sgn(Cross(l1.t-l1.s,l2.t-l2.s))==){
Vector v=l1.t-l1.s,u=l2.s-l1.s,w=l2.t-l1.s;
if(sgn(Cross(v,u))==&&sgn(Cross(v,w))==) puts("LINE");
else puts("NONE");
}else{
Point p=LI(l1,l2);
printf("POINT %.2f %.2f\n",p.x,p.y);
}
}
int main(int argc, const char * argv[]) {
int T=read();
puts("INTERSECTING LINES OUTPUT");
while(T--){
scanf("%lf%lf%lf%lf",&x,&y,&x2,&y2);
l1=Line(Point(x,y),Point(x2,y2));
scanf("%lf%lf%lf%lf",&x,&y,&x2,&y2);
l2=Line(Point(x,y),Point(x2,y2));
solve();
}
puts("END OF OUTPUT");
return ;
}
 

POJ1269 Intersecting Lines[线段相交 交点]的更多相关文章

  1. [poj1269]Intersecting Lines

    题目大意:求两条直线的交点坐标. 解题关键:叉积的运用. 证明: 直线的一般方程为$F(x) = ax + by + c = 0$.既然我们已经知道直线的两个点,假设为$(x_0,y_0), (x_1 ...

  2. POJ1269:Intersecting Lines(判断两条直线的关系)

    题目:POJ1269 题意:给你两条直线的坐标,判断两条直线是否共线.平行.相交,若相交,求出交点. 思路:直线相交判断.如果相交求交点. 首先先判断是否共线,之后判断是否平行,如果都不是就直接求交点 ...

  3. poj 1269 Intersecting Lines(直线相交)

    Intersecting Lines Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8637   Accepted: 391 ...

  4. poj1269 intersecting lines【计算几何】

    We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a p ...

  5. POJ1269 Intersecting Lines 2017-04-16 19:43 50人阅读 评论(0) 收藏

    Intersecting Lines Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 15478   Accepted: 67 ...

  6. Pipe - POJ 1039(线段相交交点)

    题目大意:有一个不反光并且不透光的管道,现在有一束光线从最左端进入,问能达到的最右端是多少,输出x坐标.   分析:刚开始做是直接枚举两个点然后和管道进行相交查询,不过这样做需要考虑的太多,细节不容易 ...

  7. POJ 1269 Intersecting Lines(线段相交,水题)

    id=1269" rel="nofollow">Intersecting Lines 大意:给你两条直线的坐标,推断两条直线是否共线.平行.相交.若相交.求出交点. ...

  8. POJ 1269 Intersecting Lines(直线相交判断,求交点)

    Intersecting Lines Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8342   Accepted: 378 ...

  9. poj 1269 Intersecting Lines——叉积求直线交点坐标

    题目:http://poj.org/problem?id=1269 相关知识: 叉积求面积:https://www.cnblogs.com/xiexinxinlove/p/3708147.html什么 ...

随机推荐

  1. android银行卡匹配、详情展开动画、仿爱奇艺视频拖拽、扫码识别手机号等源码

    Android精选源码 android实现银行卡匹配信息源码 android实现可以展开查看详情的卡片 下拉刷新,上拉加载,侧滑显示菜单等效果RefreshSwipeRecyclerview andr ...

  2. flume1.8 Interceptors拦截器(五)

    1. Flume Interceptors Flume有能力修改/删除流程中的events.这是在拦截器(interceptor)的帮助下完成的.拦截器(Interceptors)是实现org.apa ...

  3. The most interesting feature of iPhone X - FaceID

    No doubt everybody knows that iPhone 8 & iPhone X appear on the market. A feature called FaceID ...

  4. 教你搭建你自己的Git服务器

    http://lib.csdn.net/article/git/50086 导读 现在我们将要学习如何搭建 git 服务器,如何编写自定义的 Git 钩子来在特定的事件触发相应的动作(例如通知),或者 ...

  5. Kafka 使用Java实现数据的生产和消费demo

    前言 在上一篇中讲述如何搭建kafka集群,本篇则讲述如何简单的使用 kafka .不过在使用kafka的时候,还是应该简单的了解下kafka. Kafka的介绍 Kafka是一种高吞吐量的分布式发布 ...

  6. NSRange 用法

    NSRange的定义 typedef struct _NSRange { NSUInteger location; NSUInteger length; } NSRange; NSRange是一个结构 ...

  7. .netCore数据库迁移

    程序包管理器控制台下Nuget 命令: 初始迁移命令: add-migration init -Context DAL.ProductContext 全称:migrations add Initial ...

  8. [转]【Java】内部类(Inner Class)如何创建(new)

    简单来说,内部类(inner class)指那些类定义代码被置于其它类定义中的类:而对于一般的.类定义代码不嵌套在其它类定义中的类,称为顶层(top-level)类.对于一个内部类,包含其定义代码的类 ...

  9. 闲聊cassandra

    原创,转载请注明出处 今天聊聊cassandra,里面用了不少分布式系统设计的经典算法比如consistent hashing, bloom filter, merkle tree, sstable, ...

  10. 使用Botkit和Rasa NLU构建智能聊天机器人

    欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 我们每天都会听到关于有能力涉及旅游.社交.法律​​.支持.销售等领域的新型机器人推出的新闻.根据我最后一次查阅的数据,单单Facebook Me ...