BZOJ 3143: [Hnoi2013]游走 [概率DP 高斯消元]
一个无向连通图,顶点从1编号到N,边从1编号到M。
小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数。当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和。
现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小。
输入保证30%的数据满足N≤10,100%的数据满足2≤N≤500且是一个无向简单连通图。
做过一道类似的后感觉比较简单了
求$f[i]$到每个点的概率
$f[i]=\sum\limits_{(i,j) \in E}{f[j]*\frac{1}{d[j]}}$
$f[1]$额外加上$1$
$f[n]=0$因为到$n$后就不走了没必要用$n$的概率
然后就可以得到通过一条边的概率啦,贪心分配即可
然后BZOJ数据太弱了....洛谷的数据在消元时还要判断系数$<eps$
PS:这种题应该保证有解吧
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=;
double eps=1e-;
inline int read(){
char c=getchar();int x=;
while(c<''||c>''){c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x;
}
int n,m,u,v;
int d[N];
double p[N],a[N][N];
struct edge{
int v,ne,u;
}e[N*N<<];
int h[N],cnt=;
inline void ins(int u,int v){
cnt++;
e[cnt].u=u;e[cnt].v=v;e[cnt].ne=h[u];h[u]=cnt;
cnt++;
e[cnt].u=v;e[cnt].v=u;e[cnt].ne=h[v];h[v]=cnt;
}
void buildEquation(){
for(int i=;i<n;i++){
a[i][i]=;int j;
for(int k=h[i];k;k=e[k].ne) j=e[k].v,a[i][j]=-1.0/d[j];
}
a[][n+]=;
a[n][n]=;a[n][n+]=;
}
void GaussElimination(){
for(int i=;i<=n;i++){
int r=i;
for(int j=i+;j<=n;j++) if(abs(a[j][i])>abs(a[r][i])) r=j;
if(r!=i) for(int k=;k<=n+;k++) swap(a[r][k],a[i][k]);
for(int j=i+;j<=n;j++) if(abs(a[j][i])>eps){
double t=a[j][i]/a[i][i];
for(int k=i;k<=n+;k++) a[j][k]-=t*a[i][k];
}
}
for(int i=n;i>=;i--){
for(int j=n;j>i;j--) a[i][n+]-=a[i][j]*a[j][n+];
a[i][n+]/=a[i][i];
p[i]=a[i][n+];
}
}
double f[N*N];
void solve(){
for(int i=;i<=m;i++){
int u=e[i<<].u,v=e[i<<].v;
f[i]=p[u]/d[u]+p[v]/d[v];
}
sort(f+,f++m);
double ans=;
for(int i=;i<=m;i++) ans+=(m-i+)*f[i];
printf("%.3lf",ans);
}
int main(){
freopen("in","r",stdin);
n=read();m=read();
for(int i=;i<=m;i++) u=read(),v=read(),ins(u,v),d[u]++,d[v]++;
buildEquation();
GaussElimination();
solve();
}
BZOJ 3143: [Hnoi2013]游走 [概率DP 高斯消元]的更多相关文章
- bzoj 3143 [Hnoi2013]游走 期望dp+高斯消元
[Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3394 Solved: 1493[Submit][Status][Disc ...
- BZOJ.3143.[HNOI2013]游走(概率 期望 高斯消元)
题目链接 参考 远航之曲 把走每条边的概率乘上分配的标号就是它的期望,所以我们肯定是把大的编号分配给走的概率最低的边. 我们只要计算出经过所有点的概率,就可以得出经过一条边(\(u->v\))的 ...
- BZOJ 3143 [Hnoi2013]游走 ——概率DP
概率DP+高斯消元 与博物馆一题不同的是,最终的状态是有一定的概率到达的,但是由于不能从最终状态中出来,所以最后要把最终状态的概率置为0. 一条边$(x,y)$经过的概率是x点的概率$*x$到$y$的 ...
- 【BZOJ3143】[Hnoi2013]游走 期望DP+高斯消元
[BZOJ3143][Hnoi2013]游走 Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 ...
- BZOJ3143: [Hnoi2013]游走(期望DP 高斯消元)
Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3597 Solved: 1618[Submit][Status][Discuss] Descript ...
- [HNOI2013] 游走 - 概率期望,高斯消元,贪心
假如我们知道了每条边经过的期望次数,则变成了一个显然的贪心.现在考虑如何求期望次数. 由于走到每个点后各向等概率,很显然一条边的期望次数可以与它的两个端点的期望次数,转化为求点的期望次数 考虑每个点对 ...
- 2018.09.23 bzoj3143: [Hnoi2013]游走(dp+高斯消元)
传送门 显然只需要求出所有边被经过的期望次数,然后贪心把边权小的边定城大的编号. 所以如何求出所有边被经过的期望次数? 显然这只跟边连接的两个点有关. 于是我们只需要求出两个点被经过的期望次数. 对于 ...
- BZOJ 3143: [Hnoi2013]游走 概率与期望+高斯消元
Description 一个无向连通图,顶点从1编号到N,边从1编号到M.小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获 ...
- BZOJ 3640: JC的小苹果 [概率DP 高斯消元 矩阵求逆]
3640: JC的小苹果 题意:求1到n点权和\(\le k\)的概率 sengxian orz的题解好详细啊 容易想到\(f[i][j]\)表示走到i点权为j的概率 按点权分层,可以DP 但是对于\ ...
随机推荐
- 解决jsp中编辑和删除时候弹出框闪退的问题。
---恢复内容开始--- /* 火箭设备特殊记载</li> <!-- yw4 --> */ function getYw4DL(){ var controlparm={&quo ...
- 试用最强Spark IDE--IDEA
1.安装IntelliJ IDEA IDEA 全称 IntelliJ IDEA,是java语言开发的集成环境,IntelliJ在业界被公认为最好的java开发工具之一,尤其在智能代码助手.代码自动提示 ...
- CMD命令操作MySql数据库详解
第一:mysql服务的启动和停止 1. net stop mysql 2. net start mysql 第二:登录 mysql –u用户名 [–h主机名或者IP地址] –p密码 例如:mysq ...
- ASP.NET CORE中使用Cookie身份认证
大家在使用ASP.NET的时候一定都用过FormsAuthentication做登录用户的身份认证,FormsAuthentication的核心就是Cookie,ASP.NET会将用户名存储在Cook ...
- 基础二 day4 日记
1.list增删改查 l1 = [1,'alex',True,[1,2,3],(2,3,4),{'name':'alex'}]l1 = ['alex',True,'wusir','ritian','t ...
- hbase完全分布式安装
hbase完全分布式安装 http://hbase.apache.org/book.html#standalone_dist master ...
- 短时间内多个请求状态更新,导致react 不能及时响应问题总结
个人总结 这段时间项目中遇到这样一个问题,旧项目中增加了一个聊天对话的模块,这是其他同学负责的部分,因为要有消息提醒,所以做了个轮询.消息提示因为是页头部分,所以每个模块都会引用到.这是背景. 现象 ...
- 再叙Java反射
Java中的反射 本文为反射的基础知识部分. 能够分析类能力的程序被称为反射(reflective). 反射机制允许程序在运行时取得任何一个已知名称的class的内部信息,容许程序在运行时加载.探知. ...
- SpringMVC的filter怎么使用Autowired依赖注入bean
有的时候根据我们业务的需要,我们需要在web项目中定义一个自己的filter,并想在这个filter中使用@Autowired注入bean供我们使用.如果直接使用的话是不行的,需要我们在xml文件 ...
- mysql-innoDB-多版本并发控制(MVCC)
InnoDB的MVCC,是通过在每行记录后面保存三个隐藏的列来实现的其中的两个列一个保存了行的创建时间,一个保存行的过期时间(或删除时间).当然存储的并不是实际的时间值,而是系统版本号(system ...