MySQL详解--锁,事务
才开始开发基于事务的存储引擎,后来慢慢出现了支持页锁的BDB存储引擎和支持行锁的InnoDB存储引擎(实际
InnoDB是单独的一个公司,现在已经被Oracle公司收购)。但是MyISAM的表锁依然是使用最为广泛的锁类型。本节将详细介绍MyISAM表锁
的使用。
查询表级锁争用情况
MySQL表级锁的锁模式
请求锁模式
是否兼容
当前锁模式
|
None | 读锁 | 写锁 |
读锁 | 是 | 是 | 否 |
写锁 | 是 | 否 | 否 |
MyISAM表的写操作,则会阻塞其他用户对同一表的读和写操作;MyISAM表的读操作与写操作之间,以及写操作之间是串行的!根据如表20-2所示的
例子可以知道,当一个线程获得对一个表的写锁后,只有持有锁的线程可以对表进行更新操作。其他线程的读、写操作都会等待,直到锁被释放为止。
session_1 | session_2 |
获得表film_text的WRITE锁定
mysql> lock table film_text write;
Query OK, 0 rows affected (0.00 sec)
|
|
当前session对锁定表的查询、更新、插入操作都可以执行:
mysql> select film_id,title from film_text where film_id = 1001;
+---------+-------------+
| film_id | title |
+---------+-------------+
| 1001 | Update Test |
+---------+-------------+
1 row in set (0.00 sec)
mysql> insert into film_text (film_id,title) values(1003,'Test');
Query OK, 1 row affected (0.00 sec)
mysql> update film_text set title = 'Test' where film_id = 1001;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0
|
其他session对锁定表的查询被阻塞,需要等待锁被释放:
mysql> select film_id,title from film_text where film_id = 1001;
等待
|
释放锁:
mysql> unlock tables;
Query OK, 0 rows affected (0.00 sec)
|
等待 |
Session2获得锁,查询返回:
mysql> select film_id,title from film_text where film_id = 1001;
+---------+-------+
| film_id | title |
+---------+-------+
| 1001 | Test |
+---------+-------+
1 row in set (57.59 sec)
|
如何加表锁
前,会自动给涉及的表加写锁,这个过程并不需要用户干预,因此,用户一般不需要直接用LOCK
TABLE命令给MyISAM表显式加锁。在本书的示例中,显式加锁基本上都是为了方便而已,并非必须如此。
录有各订单的总金额total,同时还有一个订单明细表order_detail,其中记录有各订单每一产品的金额小计
subtotal,假设我们需要检查这两个表的金额合计是否相符,可能就需要执行如下两条SQL:
session_1 | session_2 |
获得表film_text的READ锁定
mysql> lock table film_text read;
Query OK, 0 rows affected (0.00 sec)
|
|
当前session可以查询该表记录
mysql> select film_id,title from film_text where film_id = 1001;
+---------+------------------+
| film_id | title |
+---------+------------------+
| 1001 | ACADEMY DINOSAUR |
+---------+------------------+
1 row in set (0.00 sec)
|
其他session也可以查询该表的记录
mysql> select film_id,title from film_text where film_id = 1001;
+---------+------------------+
| film_id | title |
+---------+------------------+
| 1001 | ACADEMY DINOSAUR |
+---------+------------------+
1 row in set (0.00 sec)
|
当前session不能查询没有锁定的表
mysql> select film_id,title from film where film_id = 1001;
ERROR 1100 (HY000): Table 'film' was not locked with LOCK TABLES
|
其他session可以查询或者更新未锁定的表
mysql> select film_id,title from film where film_id = 1001;
+---------+---------------+
| film_id | title |
+---------+---------------+
| 1001 | update record |
+---------+---------------+
1 row in set (0.00 sec)
mysql> update film set title = 'Test' where film_id = 1001;
Query OK, 1 row affected (0.04 sec)
Rows matched: 1 Changed: 1 Warnings: 0
|
当前session中插入或者更新锁定的表都会提示错误:
mysql> insert into film_text (film_id,title) values(1002,'Test');
ERROR 1099 (HY000): Table 'film_text' was locked with a READ lock and can't be updated
mysql> update film_text set title = 'Test' where film_id = 1001;
ERROR 1099 (HY000): Table 'film_text' was locked with a READ lock and can't be updated
|
其他session更新锁定表会等待获得锁:
mysql> update film_text set title = 'Test' where film_id = 1001;
等待
|
释放锁
mysql> unlock tables;
Query OK, 0 rows affected (0.00 sec)
|
等待 |
Session获得锁,更新操作完成:
mysql> update film_text set title = 'Test' where film_id = 1001;
Query OK, 1 row affected (1 min 0.71 sec)
Rows matched: 1 Changed: 1 Warnings: 0
|
from actor a,actor b where a.first_name = b.first_name and a.first_name =
'Lisa' and a.last_name = 'Tom' and a.last_name <> b.last_name;
from actor a,actor b where a.first_name = b.first_name and a.first_name =
'Lisa' and a.last_name = 'Tom' and a.last_name <> b.last_name;
并发插入(Concurrent Inserts)
LOCAL锁,该线程可以对表进行查询操作,但不能对表进行更新操作;其他的线程(session_2),虽然不能对表进行删除和更新操作,但却可以对该
表进行并发插入操作,这里假设该表中间不存在空洞。
session_1 | session_2 |
获得表film_text的READ LOCAL锁定
mysql> lock table film_text read local;
Query OK, 0 rows affected (0.00 sec)
|
|
当前session不能对锁定表进行更新或者插入操作:
mysql> insert into film_text (film_id,title) values(1002,'Test');
ERROR 1099 (HY000): Table 'film_text' was locked with a READ lock and can't be updated
mysql> update film_text set title = 'Test' where film_id = 1001;
ERROR 1099 (HY000): Table 'film_text' was locked with a READ lock and can't be updated
|
其他session可以进行插入操作,但是更新会等待:
mysql> insert into film_text (film_id,title) values(1002,'Test');
Query OK, 1 row affected (0.00 sec)
mysql> update film_text set title = 'Update Test' where film_id = 1001;
等待
|
当前session不能访问其他session插入的记录:
mysql> select film_id,title from film_text where film_id = 1002;
Empty set (0.00 sec)
|
|
释放锁:
mysql> unlock tables;
Query OK, 0 rows affected (0.00 sec)
|
等待 |
当前session解锁后可以获得其他session插入的记录:
mysql> select film_id,title from film_text where film_id = 1002;
+---------+-------+
| film_id | title |
+---------+-------+
| 1002 | Test |
+---------+-------+
1 row in set (0.00 sec)
|
Session2获得锁,更新操作完成:
mysql> update film_text set title = 'Update Test' where film_id = 1001;
Query OK, 1 row affected (1 min 17.75 sec)
Rows matched: 1 Changed: 1 Warnings: 0
|
MyISAM的锁调度
此,应用中应尽量避免出现长时间运行的查询操作,不要总想用一条SELECT语句来解决问题,因为这种看似巧妙的SQL语句,往往比较复杂,执行时间较
长,在可能的情况下可以通过使用中间表等措施对SQL语句做一定的“分解”,使每一步查询都能在较短时间完成,从而减少锁冲突。如果复杂查询不可避免,应
尽量安排在数据库空闲时段执行,比如一些定期统计可以安排在夜间执行。
背景知识
1.事务(Transaction)及其ACID属性
2.并发事务处理带来的问题
时,由于每个事务都不知道其他事务的存在,就会发生丢失更新问题--最后的更新覆盖了由其他事务所做的更新。例如,两个编辑人员制作了同一文档的电子副
本。每个编辑人员独立地更改其副本,然后保存更改后的副本,这样就覆盖了原始文档。最后保存其更改副本的编辑人员覆盖另一个编辑人员所做的更改。如果在一
个编辑人员完成并提交事务之前,另一个编辑人员不能访问同一文件,则可避免此问题。
3.事务隔离级别
“串行化”进行,这显然与“并发”是矛盾的。同时,不同的应用对读一致性和事务隔离程度的要求也是不同的,比如许多应用对“不可重复读”和“幻读”并不敏
感,可能更关心数据并发访问的能力。
SQL92定义了4个事务隔离级别,每个级别的隔离程度不同,允许出现的副作用也不同,应用可以根据自己的业务逻辑要求,通过选择不同的隔离级别来平衡
“隔离”与“并发”的矛盾。表20-5很好地概括了这4个隔离级别的特性。
读数据一致性及允许的并发副作用
隔离级别
|
读数据一致性 | 脏读 | 不可重复读 | 幻读 |
未提交读(Read uncommitted)
|
最低级别,只能保证不读取物理上损坏的数据 | 是 | 是 | 是 |
已提交度(Read committed)
|
语句级 | 否 | 是 | 是 |
可重复读(Repeatable read)
|
事务级 | 否 | 否 | 是 |
可序列化(Serializable)
|
最高级别,事务级 | 否 | 否 | 否 |
committed和Serializable两个标准隔离级别,另外还提供自己定义的Read only隔离级别;SQL
Server除支持上述ISO/ANSI
SQL92定义的4个隔离级别外,还支持一个叫做“快照”的隔离级别,但严格来说它是一个用MVCC实现的Serializable隔离级别。MySQL
支持全部4个隔离级别,但在具体实现时,有一些特点,比如在一些隔离级别下是采用MVCC一致性读,但某些情况下又不是,这些内容在后面的章节中将会做进
一步介绍。
获取InnoDB行锁争用情况
STATUS的显示内容中,会有详细的当前锁等待的信息,包括表名、锁类型、锁定记录的情况等,便于进行进一步的分析和问题的确定。打开监视器以后,默认
情况下每15秒会向日志中记录监控的内容,如果长时间打开会导致.err文件变得非常的巨大,所以用户在确认问题原因之后,要记得删除监控表以关闭监视
器,或者通过使用“--console”选项来启动服务器以关闭写日志文件。
InnoDB的行锁模式及加锁方法
请求锁模式
是否兼容
当前锁模式
|
X | IX | S | IS |
X | 冲突 | 冲突 | 冲突 | 冲突 |
IX | 冲突 | 兼容 | 冲突 | 兼容 |
S | 冲突 | 冲突 | 兼容 | 兼容 |
IS | 冲突 | 兼容 | 兼容 | 兼容 |
MODE获得共享锁,主要用在需要数据依存关系时来确认某行记录是否存在,并确保没有人对这个记录进行UPDATE或者DELETE操作。但是如果当前事
务也需要对该记录进行更新操作,则很有可能造成死锁,对于锁定行记录后需要进行更新操作的应用,应该使用SELECT... FOR
UPDATE方式获得排他锁。
session_1 | session_2 |
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> select actor_id,first_name,last_name from actor where actor_id = 178;
+----------+------------+-----------+
| actor_id | first_name | last_name |
+----------+------------+-----------+
| 178 | LISA | MONROE |
+----------+------------+-----------+
1 row in set (0.00 sec)
|
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> select actor_id,first_name,last_name from actor where actor_id = 178;
+----------+------------+-----------+
| actor_id | first_name | last_name |
+----------+------------+-----------+
| 178 | LISA | MONROE |
+----------+------------+-----------+
1 row in set (0.00 sec)
|
当前session对actor_id=178的记录加share mode 的共享锁:
mysql> select actor_id,first_name,last_name from actor where actor_id = 178lock in share mode;
+----------+------------+-----------+
| actor_id | first_name | last_name |
+----------+------------+-----------+
| 178 | LISA | MONROE |
+----------+------------+-----------+
1 row in set (0.01 sec)
|
|
其他session仍然可以查询记录,并也可以对该记录加share mode的共享锁:
mysql> select actor_id,first_name,last_name from actor where actor_id = 178lock in share mode;
+----------+------------+-----------+
| actor_id | first_name | last_name |
+----------+------------+-----------+
| 178 | LISA | MONROE |
+----------+------------+-----------+
1 row in set (0.01 sec)
|
|
当前session对锁定的记录进行更新操作,等待锁:
mysql> update actor set last_name = 'MONROE T' where actor_id = 178;
等待
|
|
其他session也对该记录进行更新操作,则会导致死锁退出:
mysql> update actor set last_name = 'MONROE T' where actor_id = 178;
ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction
|
|
获得锁后,可以成功更新:
mysql> update actor set last_name = 'MONROE T' where actor_id = 178;
Query OK, 1 row affected (17.67 sec)
Rows matched: 1 Changed: 1 Warnings: 0
|
session_1 | session_2 |
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> select actor_id,first_name,last_name from actor where actor_id = 178;
+----------+------------+-----------+
| actor_id | first_name | last_name |
+----------+------------+-----------+
| 178 | LISA | MONROE |
+----------+------------+-----------+
1 row in set (0.00 sec)
|
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> select actor_id,first_name,last_name from actor where actor_id = 178;
+----------+------------+-----------+
| actor_id | first_name | last_name |
+----------+------------+-----------+
| 178 | LISA | MONROE |
+----------+------------+-----------+
1 row in set (0.00 sec)
|
当前session对actor_id=178的记录加for update的排它锁:
mysql> select actor_id,first_name,last_name from actor where actor_id = 178 for update;
+----------+------------+-----------+
| actor_id | first_name | last_name |
+----------+------------+-----------+
| 178 | LISA | MONROE |
+----------+------------+-----------+
1 row in set (0.00 sec)
|
|
其他session可以查询该记录,但是不能对该记录加共享锁,会等待获得锁:
mysql> select actor_id,first_name,last_name from actor where actor_id = 178;
+----------+------------+-----------+
| actor_id | first_name | last_name |
+----------+------------+-----------+
| 178 | LISA | MONROE |
+----------+------------+-----------+
1 row in set (0.00 sec)
mysql> select actor_id,first_name,last_name from actor where actor_id = 178 for update;
等待
|
|
当前session可以对锁定的记录进行更新操作,更新后释放锁:
mysql> update actor set last_name = 'MONROE T' where actor_id = 178;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0
mysql> commit;
Query OK, 0 rows affected (0.01 sec)
|
|
其他session获得锁,得到其他session提交的记录:
mysql> select actor_id,first_name,last_name from actor where actor_id = 178 for update;
+----------+------------+-----------+
| actor_id | first_name | last_name |
+----------+------------+-----------+
| 178 | LISA | MONROE T |
+----------+------------+-----------+
1 row in set (9.59 sec)
|
InnoDB行锁实现方式
session_1 | session_2 |
mysql> set autocommit=0;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from tab_no_index where id = 1 ;
+------+------+
| id | name |
+------+------+
| 1 | 1 |
+------+------+
1 row in set (0.00 sec)
|
mysql> set autocommit=0;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from tab_no_index where id = 2 ;
+------+------+
| id | name |
+------+------+
| 2 | 2 |
+------+------+
1 row in set (0.00 sec)
|
mysql> select * from tab_no_index where id = 1 for update;
+------+------+
| id | name |
+------+------+
| 1 | 1 |
+------+------+
1 row in set (0.00 sec)
|
|
mysql> select * from tab_no_index where id = 2 for update;
等待
|
-9所示的例子中,看起来session_1只给一行加了排他锁,但session_2在请求其他行的排他锁时,却出现了锁等待!原因就是在没有索引的情
况下,InnoDB只能使用表锁。当我们给其增加一个索引后,InnoDB就只锁定了符合条件的行,如表20-10所示。
session_1 | session_2 |
mysql> set autocommit=0;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from tab_with_index where id = 1 ;
+------+------+
| id | name |
+------+------+
| 1 | 1 |
+------+------+
1 row in set (0.00 sec)
|
mysql> set autocommit=0;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from tab_with_index where id = 2 ;
+------+------+
| id | name |
+------+------+
| 2 | 2 |
+------+------+
1 row in set (0.00 sec)
|
mysql> select * from tab_with_index where id = 1 for update;
+------+------+
| id | name |
+------+------+
| 1 | 1 |
+------+------+
1 row in set (0.00 sec)
|
|
mysql> select * from tab_with_index where id = 2 for update;
+------+------+
| id | name |
+------+------+
| 2 | 2 |
+------+------+
1 row in set (0.00 sec)
|
session_1 | session_2 |
mysql> set autocommit=0;
Query OK, 0 rows affected (0.00 sec)
|
mysql> set autocommit=0;
Query OK, 0 rows affected (0.00 sec)
|
mysql> select * from tab_with_index where id = 1 and name = '1' for update;
+------+------+
| id | name |
+------+------+
| 1 | 1 |
+------+------+
1 row in set (0.00 sec)
|
|
虽然session_2访问的是和session_1不同的记录,但是因为使用了相同的索引,所以需要等待锁:
mysql> select * from tab_with_index where id = 1 and name = '4' for update;
等待
|
session_1 | session_2 |
mysql> set autocommit=0;
Query OK, 0 rows affected (0.00 sec)
|
mysql> set autocommit=0;
Query OK, 0 rows affected (0.00 sec)
|
mysql> select * from tab_with_index where id = 1 for update;
+------+------+
| id | name |
+------+------+
| 1 | 1 |
| 1 | 4 |
+------+------+
2 rows in set (0.00 sec)
|
|
Session_2使用name的索引访问记录,因为记录没有被索引,所以可以获得锁:
mysql> select * from tab_with_index where name = '2' for update;
+------+------+
| id | name |
+------+------+
| 2 | 2 |
+------+------+
1 row in set (0.00 sec)
|
|
由于访问的记录已经被session_1锁定,所以等待获得锁。:
mysql> select * from tab_with_index where name = '4' for update;
|
间隙锁(Next-Key锁)
但并不存在的记录,叫做“间隙(GAP)”,InnoDB也会对这个“间隙”加锁,这种锁机制就是所谓的间隙锁(Next-Key锁)。
empid大于100的任何记录,那么本事务如果再次执行上述语句,就会发生幻读;另外一方面,是为了满足其恢复和复制的需要。有关其恢复和复制对锁机制
的影响,以及不同隔离级别下InnoDB使用间隙锁的情况,在后续的章节中会做进一步介绍。
session_1 | session_2 |
mysql> select @@tx_isolation;
+-----------------+
| @@tx_isolation |
+-----------------+
| REPEATABLE-READ |
+-----------------+
1 row in set (0.00 sec)
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
|
mysql> select @@tx_isolation;
+-----------------+
| @@tx_isolation |
+-----------------+
| REPEATABLE-READ |
+-----------------+
1 row in set (0.00 sec)
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
|
当前session对不存在的记录加for update的锁:
mysql> select * from emp where empid = 102 for update;
Empty set (0.00 sec)
|
|
这时,如果其他session插入empid为102的记录(注意:这条记录并不存在),也会出现锁等待:
mysql>insert into emp(empid,...) values(102,...);
阻塞等待
|
|
Session_1 执行rollback:
mysql> rollback;
Query OK, 0 rows affected (13.04 sec)
|
|
由于其他session_1回退后释放了Next-Key锁,当前session可以获得锁并成功插入记录:
mysql>insert into emp(empid,...) values(102,...);
Query OK, 1 row affected (13.35 sec)
|
恢复和复制的需要,对InnoDB锁机制的影响
和主从复制(可以参见本书“管理篇”的介绍)。MySQL的恢复机制(复制其实就是在Slave Mysql不断做基于BINLOG的恢复)有以下特点。
二是MySQL的Binlog是按照事务提交的先后顺序记录的,恢复也是按这个顺序进行的。这点也与Oralce不同,Oracle是按照系统更新号
(System Change
Number,SCN)来恢复数据的,每个事务开始时,Oracle都会分配一个全局唯一的SCN,SCN的顺序与事务开始的时间顺序是一致的。
经超过了ISO/ANSI
SQL92“可重复读”隔离级别的要求,实际上是要求事务要串行化。这也是许多情况下,InnoDB要用到间隙锁的原因,比如在用范围条件更新记录时,无
论在Read Commited或是Repeatable
Read隔离级别下,InnoDB都要使用间隙锁,但这并不是隔离级别要求的,有关InnoDB在不同隔离级别下加锁的差异在下一小节还会介绍。
...”和“create table new_tab ...select ... From source_tab where
...(CTAS)”这种SQL语句,用户并没有对source_tab做任何更新操作,但MySQL对这种SQL语句做了特别处理。先来看如表
20-14的例子。
session_1 | session_2 |
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from target_tab;
Empty set (0.00 sec)
mysql> select * from source_tab where name = '1';
+----+------+----+
| d1 | name | d2 |
+----+------+----+
| 4 | 1 | 1 |
| 5 | 1 | 1 |
| 6 | 1 | 1 |
| 7 | 1 | 1 |
| 8 | 1 | 1 |
+----+------+----+
5 rows in set (0.00 sec)
|
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from target_tab;
Empty set (0.00 sec)
mysql> select * from source_tab where name = '1';
+----+------+----+
| d1 | name | d2 |
+----+------+----+
| 4 | 1 | 1 |
| 5 | 1 | 1 |
| 6 | 1 | 1 |
| 7 | 1 | 1 |
| 8 | 1 | 1 |
+----+------+----+
5 rows in set (0.00 sec)
|
mysql> insert into target_tab select d1,name from source_tab where name = '1';
Query OK, 5 rows affected (0.00 sec)
Records: 5 Duplicates: 0 Warnings: 0
|
|
mysql> update source_tab set name = '1' where name = '8';
等待
|
|
commit; | |
返回结果
commit;
|
source_tab表的数据,相当于执行一个普通的SELECT语句,用一致性读就可以了。ORACLE正是这么做的,它通过MVCC技术实现的多版本
数据来实现一致性读,不需要给source_tab加任何锁。我们知道InnoDB也实现了多版本数据,对普通的SELECT一致性读,也不需要加任何
锁;但这里InnoDB却给source_tab加了共享锁,并没有使用多版本数据一致性读技术!
source_tab做了更新操作,就可能导致数据恢复的结果错误。为了演示这一点,我们再重复一下前面的例子,不同的是在session_1执行事务
前,先将系统变量
innodb_locks_unsafe_for_binlog的值设置为“on”(其默认值为off),具体结果如表20-15所示。
session_1 | session_2 |
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql>set innodb_locks_unsafe_for_binlog='on'
Query OK, 0 rows affected (0.00 sec)
mysql> select * from target_tab;
Empty set (0.00 sec)
mysql> select * from source_tab where name = '1';
+----+------+----+
| d1 | name | d2 |
+----+------+----+
| 4 | 1 | 1 |
| 5 | 1 | 1 |
| 6 | 1 | 1 |
| 7 | 1 | 1 |
| 8 | 1 | 1 |
+----+------+----+
5 rows in set (0.00 sec)
|
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from target_tab;
Empty set (0.00 sec)
mysql> select * from source_tab where name = '1';
+----+------+----+
| d1 | name | d2 |
+----+------+----+
| 4 | 1 | 1 |
| 5 | 1 | 1 |
| 6 | 1 | 1 |
| 7 | 1 | 1 |
| 8 | 1 | 1 |
+----+------+----+
5 rows in set (0.00 sec)
|
mysql> insert into target_tab select d1,name from source_tab where name = '1';
Query OK, 5 rows affected (0.00 sec)
Records: 5 Duplicates: 0 Warnings: 0
|
|
session_1未提交,可以对session_1的select的记录进行更新操作。
mysql> update source_tab set name = '8' where name = '1';
Query OK, 5 rows affected (0.00 sec)
Rows matched: 5 Changed: 5 Warnings: 0
mysql> select * from source_tab where name = '8';
+----+------+----+
| d1 | name | d2 |
+----+------+----+
| 4 | 8 | 1 |
| 5 | 8 | 1 |
| 6 | 8 | 1 |
| 7 | 8 | 1 |
| 8 | 8 | 1 |
+----+------+----+
5 rows in set (0.00 sec)
|
|
更新操作先提交
mysql> commit;
Query OK, 0 rows affected (0.05 sec)
|
|
插入操作后提交
mysql> commit;
Query OK, 0 rows affected (0.07 sec)
|
|
此时查看数据,target_tab中可以插入source_tab更新前的结果,这符合应用逻辑:
mysql> select * from source_tab where name = '8';
+----+------+----+
| d1 | name | d2 |
+----+------+----+
| 4 | 8 | 1 |
| 5 | 8 | 1 |
| 6 | 8 | 1 |
| 7 | 8 | 1 |
| 8 | 8 | 1 |
+----+------+----+
5 rows in set (0.00 sec)
mysql> select * from target_tab;
+------+------+
| id | name |
+------+------+
| 4 | 1.00 |
| 5 | 1.00 |
| 6 | 1.00 |
| 7 | 1.00 |
| 8 | 1.00 |
+------+------+
5 rows in set (0.00 sec)
|
mysql> select * from tt1 where name = '1';
Empty set (0.00 sec)
mysql> select * from source_tab where name = '8';
+----+------+----+
| d1 | name | d2 |
+----+------+----+
| 4 | 8 | 1 |
| 5 | 8 | 1 |
| 6 | 8 | 1 |
| 7 | 8 | 1 |
| 8 | 8 | 1 |
+----+------+----+
5 rows in set (0.00 sec)
mysql> select * from target_tab;
+------+------+
| id | name |
+------+------+
| 4 | 1.00 |
| 5 | 1.00 |
| 6 | 1.00 |
| 7 | 1.00 |
| 8 | 1.00 |
+------+------+
5 rows in set (0.00 sec)
|
select * from source_tab where ...”和“create table new_tab ...select ...
From source_tab where
...”时要给source_tab加锁,而不是使用对并发影响最小的多版本数据来实现一致性读。还要特别说明的是,如果上述语句的SELECT是范围条
件,InnoDB还会给源表加间隙锁(Next-Lock)。
TABLE...SELECT...语句,可能会阻止对源表的并发更新,造成对源表锁的等待。如果查询比较复杂的话,会造成严重的性能问题,我们在应用中
应尽量避免使用。实际上,MySQL将这种SQL叫作不确定(non-deterministic)的SQL,不推荐使用。
InnoDB在不同隔离级别下的一致性读及锁的差异
SQL92隔离级别的手段,因此,在不同的隔离级别下,InnoDB处理SQL时采用的一致性读策略和需要的锁是不同的。同时,数据恢复和复制机制的特
点,也对一些SQL的一致性读策略和锁策略有很大影响。将这些特性归纳成如表20-16所示的内容,以便读者查阅。
隔离级别
一致性读和锁
SQL
|
Read Uncommited | Read Commited | Repeatable Read | Serializable | |
SQL | 条件 | ||||
select | 相等 | None locks | Consisten read/None lock | Consisten read/None lock | Share locks |
范围 | None locks | Consisten read/None lock | Consisten read/None lock | Share Next-Key | |
update | 相等 | exclusive locks | exclusive locks | exclusive locks | Exclusive locks |
范围 | exclusive next-key | exclusive next-key | exclusive next-key | exclusive next-key | |
Insert | N/A | exclusive locks | exclusive locks | exclusive locks | exclusive locks |
replace | 无键冲突 | exclusive locks | exclusive locks | exclusive locks | exclusive locks |
键冲突 | exclusive next-key | exclusive next-key | exclusive next-key | exclusive next-key | |
delete | 相等 | exclusive locks | exclusive locks | exclusive locks | exclusive locks |
范围 | exclusive next-key | exclusive next-key | exclusive next-key | exclusive next-key | |
Select ... from ... Lock in share mode | 相等 | Share locks | Share locks | Share locks | Share locks |
范围 | Share locks | Share locks | Share Next-Key | Share Next-Key | |
Select * from ... For update | 相等 | exclusive locks | exclusive locks | exclusive locks | exclusive locks |
范围 | exclusive locks | Share locks | exclusive next-key | exclusive next-key | |
Insert into ... Select ...
(指源表锁)
|
innodb_locks_unsafe_for_binlog=off | Share Next-Key | Share Next-Key | Share Next-Key | Share Next-Key |
innodb_locks_unsafe_for_binlog=on | None locks | Consisten read/None lock | Consisten read/None lock | Share Next-Key | |
create table ... Select ...
(指源表锁)
|
innodb_locks_unsafe_for_binlog=off | Share Next-Key | Share Next-Key | Share Next-Key | Share Next-Key |
innodb_locks_unsafe_for_binlog=on | None locks | Consisten read/None lock | Consisten read/None lock | Share Next-Key |
性也就越高,从而对并发性事务处理性能的影响也就越大。因此,我们在应用中,应该尽量使用较低的隔离级别,以减少锁争用的机率。实际上,通过优化事务逻
辑,大部分应用使用Read Commited隔离级别就足够了。对于一些确实需要更高隔离级别的事务,可以通过在程序中执行SET SESSION
TRANSACTION ISOLATION LEVEL REPEATABLE READ或SET SESSION TRANSACTION
ISOLATION LEVEL SERIALIZABLE动态改变隔离级别的方式满足需求。
什么时候使用表锁
TABLES虽然可以给InnoDB加表级锁,但必须说明的是,表锁不是由InnoDB存储引擎层管理的,而是由其上一层──MySQL
Server负责的,仅当autocommit=0、innodb_table_locks=1(默认设置)时,InnoDB层才能知道MySQL加的表
锁,MySQL
Server也才能感知InnoDB加的行锁,这种情况下,InnoDB才能自动识别涉及表级锁的死锁;否则,InnoDB将无法自动检测并处理这种死
锁。有关死锁,下一小节还会继续讨论。
TABLES对InnoDB表加锁时要注意,要将AUTOCOMMIT设为0,否则MySQL不会给表加锁;事务结束前,不要用UNLOCK
TABLES释放表锁,因为UNLOCK TABLES会隐含地提交事务;COMMIT或ROLLBACK并不能释放用LOCK
TABLES加的表级锁,必须用UNLOCK TABLES释放表锁。正确的方式见如下语句:
关于死锁
free的,这是因为MyISAM总是一次获得所需的全部锁,要么全部满足,要么等待,因此不会出现死锁。但在InnoDB中,除单个SQL组成的事务
外,锁是逐步获得的,这就决定了在InnoDB中发生死锁是可能的。如表20-17所示的就是一个发生死锁的例子。
session_1 | session_2 |
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from table_1 where where id=1 for update;
...
做一些其他处理...
|
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from table_2 where id=1 for update;
...
|
select * from table_2 where id =1 for update;
因session_2已取得排他锁,等待
|
做一些其他处理... |
mysql> select * from table_1 where where id=1 for update;
死锁
|
或涉及表锁的情况下,InnoDB并不能完全自动检测到死锁,这需要通过设置锁等待超时参数
innodb_lock_wait_timeout来解决。需要说明的是,这个参数并不是只用来解决死锁问题,在并发访问比较高的情况下,如果大量事务因
无法立即获得所需的锁而挂起,会占用大量计算机资源,造成严重性能问题,甚至拖跨数据库。我们通过设置合适的锁等待超时阈值,可以避免这种情况发生。
session_1 | session_2 |
mysql> set autocommit=0;
Query OK, 0 rows affected (0.00 sec)
|
mysql> set autocommit=0;
Query OK, 0 rows affected (0.00 sec)
|
mysql> select first_name,last_name from actor where actor_id = 1 for update;
+------------+-----------+
| first_name | last_name |
+------------+-----------+
| PENELOPE | GUINESS |
+------------+-----------+
1 row in set (0.00 sec)
|
|
mysql> insert into country (country_id,country) values(110,'Test');
Query OK, 1 row affected (0.00 sec)
|
|
mysql> insert into country (country_id,country) values(110,'Test');
等待
|
|
mysql> select first_name,last_name from actor where actor_id = 1 for update;
+------------+-----------+
| first_name | last_name |
+------------+-----------+
| PENELOPE | GUINESS |
+------------+-----------+
1 row in set (0.00 sec)
|
|
mysql> insert into country (country_id,country) values(110,'Test');
ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction
|
session_1 | session_2 |
mysql> set autocommit=0;
Query OK, 0 rows affected (0.00 sec)
|
mysql> set autocommit=0;
Query OK, 0 rows affected (0.00 sec)
|
mysql> select first_name,last_name from actor where actor_id = 1 for update;
+------------+-----------+
| first_name | last_name |
+------------+-----------+
| PENELOPE | GUINESS |
+------------+-----------+
1 row in set (0.00 sec)
|
|
mysql> select first_name,last_name from actor where actor_id = 3 for update;
+------------+-----------+
| first_name | last_name |
+------------+-----------+
| ED | CHASE |
+------------+-----------+
1 row in set (0.00 sec)
|
|
mysql> select first_name,last_name from actor where actor_id = 3 for update;
等待
|
|
mysql> select first_name,last_name from actor where actor_id = 1 for update;
ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction
|
|
mysql> select first_name,last_name from actor where actor_id = 3 for update;
+------------+-----------+
| first_name | last_name |
+------------+-----------+
| ED | CHASE |
+------------+-----------+
1 row in set (4.71 sec)
|
UPDATE加排他锁,在没有符合该条件记录情况下,两个线程都会加锁成功。程序发现记录尚不存在,就试图插入一条新记录,如果两个线程都这么做,就会出
现死锁。这种情况下,将隔离级别改成READ COMMITTED,就可避免问题,如表20-20所示。
session_1 | session_2 |
mysql> select @@tx_isolation;
+-----------------+
| @@tx_isolation |
+-----------------+
| REPEATABLE-READ |
+-----------------+
1 row in set (0.00 sec)
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
|
mysql> select @@tx_isolation;
+-----------------+
| @@tx_isolation |
+-----------------+
| REPEATABLE-READ |
+-----------------+
1 row in set (0.00 sec)
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
|
当前session对不存在的记录加for update的锁:
mysql> select actor_id,first_name,last_name from actor where actor_id = 201 for update;
Empty set (0.00 sec)
|
|
其他session也可以对不存在的记录加for update的锁:
mysql> select actor_id,first_name,last_name from actor where actor_id = 201 for update;
Empty set (0.00 sec)
|
|
因为其他session也对该记录加了锁,所以当前的插入会等待:
mysql> insert into actor (actor_id , first_name , last_name) values(201,'Lisa','Tom');
等待
|
|
因为其他session已经对记录进行了更新,这时候再插入记录就会提示死锁并退出:
mysql> insert into actor (actor_id, first_name , last_name) values(201,'Lisa','Tom');
ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction
|
|
由于其他session已经退出,当前session可以获得锁并成功插入记录:
mysql> insert into actor (actor_id , first_name , last_name) values(201,'Lisa','Tom');
Query OK, 1 row affected (13.35 sec)
|
UPDATE,判断是否存在符合条件的记录,如果没有,就插入记录。此时,只有一个线程能插入成功,另一个线程会出现锁等待,当第1个线程提交后,第2个
线程会因主键重出错,但虽然这个线程出错了,却会获得一个排他锁!这时如果有第3个线程又来申请排他锁,也会出现死锁。
session_1 | session_2 | session_3 |
mysql> select @@tx_isolation;
+----------------+
| @@tx_isolation |
+----------------+
| READ-COMMITTED |
+----------------+
1 row in set (0.00 sec)
mysql> set autocommit=0;
Query OK, 0 rows affected (0.01 sec)
|
mysql> select @@tx_isolation;
+----------------+
| @@tx_isolation |
+----------------+
| READ-COMMITTED |
+----------------+
1 row in set (0.00 sec)
mysql> set autocommit=0;
Query OK, 0 rows affected (0.01 sec)
|
mysql> select @@tx_isolation;
+----------------+
| @@tx_isolation |
+----------------+
| READ-COMMITTED |
+----------------+
1 row in set (0.00 sec)
mysql> set autocommit=0;
Query OK, 0 rows affected (0.01 sec)
|
Session_1获得for update的共享锁:
mysql> select actor_id, first_name,last_name from actor where actor_id = 201 for update;
Empty set (0.00 sec)
|
由于记录不存在,session_2也可以获得for update的共享锁:
mysql> select actor_id, first_name,last_name from actor where actor_id = 201 for update;
Empty set (0.00 sec)
|
|
Session_1可以成功插入记录:
mysql> insert into actor (actor_id,first_name,last_name) values(201,'Lisa','Tom');
Query OK, 1 row affected (0.00 sec)
|
||
Session_2插入申请等待获得锁:
mysql> insert into actor (actor_id,first_name,last_name) values(201,'Lisa','Tom');
等待
|
||
Session_1成功提交:
mysql> commit;
Query OK, 0 rows affected (0.04 sec)
|
||
Session_2获得锁,发现插入记录主键重,这个时候抛出了异常,但是并没有释放共享锁:
mysql> insert into actor (actor_id,first_name,last_name) values(201,'Lisa','Tom');
ERROR 1062 (23000): Duplicate entry '201' for key 'PRIMARY'
|
||
Session_3申请获得共享锁,因为session_2已经锁定该记录,所以session_3需要等待:
mysql> select actor_id, first_name,last_name from actor where actor_id = 201 for update;
等待
|
||
这个时候,如果session_2直接对记录进行更新操作,则会抛出死锁的异常:
mysql> update actor set last_name='Lan' where actor_id = 201;
ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction
|
||
Session_2释放锁后,session_3获得锁:
mysql> select first_name, last_name from actor where actor_id = 201 for update;
+------------+-----------+
| first_name | last_name |
+------------+-----------+
| Lisa | Tom |
+------------+-----------+
1 row in set (31.12 sec)
|
STATUS命令来确定最后一个死锁产生的原因。返回结果中包括死锁相关事务的详细信息,如引发死锁的SQL语句,事务已经获得的锁,正在等待什么锁,以
及被回滚的事务等。据此可以分析死锁产生的原因和改进措施。下面是一段SHOW INNODB STATUS输出的样例:
id 1164048736 starting index read, thread declared inside InnoDB 500
MySQL事务隔离级别详解
http://xm-king.iteye.com/blog/770721
SQL标准定义了4类隔离级别,包括了一些具体规则,用来限定事务内外的哪些改变是可见的,哪些是不可见的。低级别的隔离级一般支持更高的并发处理,并拥有更低的系统开销。
Read Uncommitted(读取未提交内容)
在该隔离级别,所有事务都可以看到其他未提交事务的执行结果。本隔离级别很少用于实际应用,因为它的性能也不比其他级别好多少。读取未提交的数据,也被称之为脏读(Dirty Read)。
Read Committed(读取提交内容)
这是大多数数据库系统的默认隔离级别(但不是MySQL默认的)。它满足了隔离的简单定义:一个事务只能看见已经提交事务所做的改变。这种隔离级别
也支持所谓的不可重复读(Nonrepeatable
Read),因为同一事务的其他实例在该实例处理其间可能会有新的commit,所以同一select可能返回不同结果。
Repeatable Read(可重读)
这是MySQL的默认事务隔离级别,它确保同一事务的多个实例在并发读取数据时,会看到同样的数据行。不过理论上,这会导致另一个棘手的问题:幻读
(Phantom
Read)。简单的说,幻读指当用户读取某一范围的数据行时,另一个事务又在该范围内插入了新行,当用户再读取该范围的数据行时,会发现有新的“幻影”
行。InnoDB和Falcon存储引擎通过多版本并发控制(MVCC,Multiversion Concurrency
Control)机制解决了该问题。
Serializable(可串行化)
这是最高的隔离级别,它通过强制事务排序,使之不可能相互冲突,从而解决幻读问题。简言之,它是在每个读的数据行上加上共享锁。在这个级别,可能导致大量的超时现象和锁竞争。
这四种隔离级别采取不同的锁类型来实现,若读取的是同一个数据的话,就容易发生问题。例如:
脏读(Drity Read):某个事务已更新一份数据,另一个事务在此时读取了同一份数据,由于某些原因,前一个RollBack了操作,则后一个事务所读取的数据就会是不正确的。
不可重复读(Non-repeatable read):在一个事务的两次查询之中数据不一致,这可能是两次查询过程中间插入了一个事务更新的原有的数据。
幻读(Phantom Read):在一个事务的两次查询中数据笔数不一致,例如有一个事务查询了几列(Row)数据,而另一个事务却在此时插入了新的几列数据,先前的事务在接下来的查询中,就会发现有几列数据是它先前所没有的。
在MySQL中,实现了这四种隔离级别,分别有可能产生问题如下所示:
下面,将利用MySQL的客户端程序,分别测试几种隔离级别。测试数据库为test,表为tx;表结构:
id | int |
num |
int |
两个命令行客户端分别为A,B;不断改变A的隔离级别,在B端修改数据。
(一)、将A的隔离级别设置为read uncommitted(未提交读)
在B未更新数据之前:
客户端A:
B更新数据:
客户端B:
客户端A:
经过上面的实验可以得出结论,事务B更新了一条记录,但是没有提交,此时事务A可以查询出未提交记录。造成脏读现象。未提交读是最低的隔离级别。
(二)、将客户端A的事务隔离级别设置为read committed(已提交读)
在B未更新数据之前:
客户端A:
B更新数据:
客户端B:
客户端A:
经过上面的实验可以得出结论,已提交读隔离级别解决了脏读的问题,但是出现了不可重复读的问题,即事务A在两次查询的数据不一致,因为在两次查询之间事务B更新了一条数据。已提交读只允许读取已提交的记录,但不要求可重复读。
(三)、将A的隔离级别设置为repeatable read(可重复读)
在B未更新数据之前:
B更新数据:
客户端B:
客户端A:
B插入数据:
客户端B:
客户端A:
由以上的实验可以得出结论,可重复读隔离级别只允许读取已提交记录,而且在一个事务两次读取一个记录期间,其他事务部的更新该记录。但该事务不要求与其他
事务可串行化。例如,当一个事务可以找到由一个已提交事务更新的记录,但是可能产生幻读问题(注意是可能,因为数据库对隔离级别的实现有所差别)。像以上
的实验,就没有出现数据幻读的问题。
(四)、将A的隔离级别设置为 可串行化 (Serializable)
A端打开事务,B端插入一条记录
事务A端:
事务B端:
因为此时事务A的隔离级别设置为serializable,开始事务后,并没有提交,所以事务B只能等待。
事务A提交事务:
事务A端
事务B端
serializable完全锁定字段,若一个事务来查询同一份数据就必须等待,直到前一个事务完成并解除锁定为止 。是完整的隔离级别,会锁定对应的数据表格,因而会有效率的问题。
MySQL详解--锁,事务的更多相关文章
- MySQL详解
MySQL详解 什么是数据库 # 用来存储数据的仓库 # 数据库可以在硬盘及内存中存储数据 # 数据库与文件存储数据区别 # 数据库本质也是通过文件来存储数据, 数据库的概念就是系统的管理存储数据的文 ...
- MySql详解(六)
MySql详解(六) MySql事务 一.含义 事务:一条或多条sql语句组成一个执行单位,一组sql语句要么都执行要么都不执行 二.特点(ACID) A 原子性:一个事务是不可再分割的整体,要么都执 ...
- MySql详解(四)
MySql详解(四) MySql的DML操作 插入: 一.方式一 语法: insert into 表名(字段名,...) values(值,...); 特点: 1.要求值的类型和字段的类型要一致或兼容 ...
- MySql详解(一)
MySql详解(一) 作为一名Java开发人员,数据库的地位不用多说了.从大学时期的SqlServer,到现在最流行的MySql和Oracle.前者随着阿里巴巴的去IOE化,在互联网公司中的使用比例是 ...
- MySql详解(三)
MySql详解(三) 导入基础表 具体的SQL文件已经放入百度网盘,连接为:http://pan.baidu.com/s/1hseoVR2,后面的MySql内容都是按照这些基础表展开的. depart ...
- MySql详解(五)
MySql详解(五) MySql库的管理 一.创建库 create database [if not exists] 库名[ character set 字符集名]; 二.修改库 alter data ...
- MySql详解(七)
MySql详解(七) MySql视图 一.含义 mysql5.1版本出现的新特性,本身是一个虚拟表,它的数据来自于表,通过执行时动态生成. 好处: 1.简化sql语句 2.提高了sql的重用性 3.保 ...
- MySQL详解--锁,事务(转)
锁是计算机协调多个进程或线程并发访问某一资源的机制.在数据库中,除传统的计算资源(如CPU.RAM.I/O等)的争用以外,数据也是一种供许多用户共享的资源.如何保证数据并发访问的一致性.有效性是所有数 ...
- MySQL详解--锁
http://blog.csdn.net/xifeijian/article/details/20313977 2014-03-06 23:45 66484人阅读 评论(17) 收藏 举报 分类: ...
随机推荐
- qwe 简易深度框架
qwe github地址 简介 简单的深度框架,参考Ng的深度学习课程作业,使用了keras的API设计. 方便了解网络具体实现,避免深陷于成熟框架的细节和一些晦涩的优化代码. 网络层实现了Dense ...
- 图解MBR分区无损转换GPT分区+UEFI引导安装WIN8.1
确定你的主板支持UEFI引导.1,前期准备,WIN8.1原版系统一份(坛子里很多,自己下载个),U盘2个其中大于4G一个(最好 准备两个U盘)2,大家都知道WIN8系统只支持GPT分区,传统的MBR分 ...
- An internal error occurred during: "Building workspace". java.lang.StackOverflowError
1 错误描述 2 错误原因 由上述描述可以,MyEclipse可用内存不足,导致堆内存溢出 3 解决办法 修改MyEclipse内存设置 #utf8 (do not remove) #utf8 (do ...
- Caused by:org.hibernate.MappingNotFoundException:resouce:com/you/model/Monkey.hbm.xml not found
1.错误描述 Caused by:org.hibernate.MappingNotFoundException:resouce:com/you/model/Monkey.hbm.xml not fou ...
- 摘抄--全面理解面向对象的 JavaScript
全面理解面向对象的 JavaScript JavaScript 函数式脚本语言特性以及其看似随意的编写风格,导致长期以来人们对这一门语言的误解,即认为 JavaScript 不是一门面向对象的语言,或 ...
- MyISAM和InnoDB索引实现区别
首先来讲MyISAM: MyISAM引擎使用B+Tree作为索引结构,叶节点的data域存放的是数据记录的地址.下图是MyISAM索引的原理图: 这里设表一共有三列,假设我们以Col1为主键,则上图是 ...
- 英文汉语切换的导航栏,纯css制作。
<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...
- luogu【P3377】 【模板】左偏树
左偏树 顾名思义 向左偏的树 (原题入口) 它有啥子用呢??? 当然是进行堆的合并啦2333普通堆的合并其实是有点慢的(用优先队列的话 只能 一个pop 一个push 来操作 复杂度就是O(n log ...
- [BZOJ1588] [HNOI2002] 营业额统计 (treap)
Description Tiger最近被公司升任为营业部经理,他上任后接受公司交给的第一项任务便是统计并分析公司成立以来的营业情况. Tiger拿出了公司的账本,账本上记录了公司成立以来每天的营业额. ...
- centos下 kerberos安装手册
(一)yum方式安装 安装krb的server 步骤一:yum install krb5-server 安装krb 的客户端yum install krb5-workstation krb5-libs ...