题目描述

监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种。如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱

输入输出格式

输入格式:

输入两个整数M,N.1<=M<=10^8,1<=N<=10^12

输出格式:

可能越狱的状态数,模100003取余

输入输出样例

输入样例#1:

2 3
输出样例#1:

6

说明

6种状态为(000)(001)(011)(100)(110)(111)

简单到不像省选题,原本打算用半小时,结果只用了5分钟

所有状态m^n,不符合条件的状态:

第一个有m种选择,接下来n-1个为(m-1)种,所以总数:m*(m-1)^(n-1)

ans=m^n-m*(m-1)^(n-1)

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int p=;
long long ans1,ans2;
long long qpow(long long x,long long m)
{
if (m==) return ;
long long tmp=qpow(x,m/);
tmp=(tmp*tmp)%p;
if (m%==) tmp=(tmp*x)%p;
return tmp;
}
int main()
{long long m,n;
cin>>m>>n;
ans1=qpow(m,n);
ans2=(m*qpow(m-,n-))%p;
cout<<(ans1-ans2+p)%p;
}

[HNOI2008]越狱的更多相关文章

  1. bzoj1008 [HNOI2008]越狱

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5099  Solved: 2207 Description 监狱有 ...

  2. 【bzoj1008】[HNOI2008]越狱

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7692  Solved: 3296[Submit][Status] ...

  3. BZOJ 1008: [HNOI2008]越狱 快速幂

    1008: [HNOI2008]越狱 Description 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生 ...

  4. BZOJ 1008 [HNOI2008]越狱

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5166  Solved: 2242[Submit][Status] ...

  5. BZOJ1008: [HNOI2008]越狱-快速幂+取模

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8689  Solved: 3748 Description 监狱有 ...

  6. BZOJ 1008 [HNOI2008]越狱 (简单排列组合 + 快速幂)

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 10503  Solved: 4558[Submit][Status ...

  7. 洛谷 P3197 [HNOI2008]越狱 解题报告

    P3197 [HNOI2008]越狱 题目描述 监狱有连续编号为\(1-N\)的\(N\)个房间,每个房间关押一个犯人,有\(M\)种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可 ...

  8. [HNOI2008]越狱 题解(容斥原理+快速幂)

    [HNOI2008]越狱 Description 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多 ...

  9. BZOJ 1008 [HNOI2008]越狱 排列组合

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4788  Solved: 2060[Submit][Status] ...

  10. bzoj1008 / P3197 [HNOI2008]越狱

    P3197 [HNOI2008]越狱 考虑所有状况:显然是$m^{n}$ 考虑所有不合法状况: 显然相邻两个数不相等 那么后面$n-1$个数就有$(m-1)^{n-1}$种取法 第一个数前面没有相邻的 ...

随机推荐

  1. 凡事预则立(Beta)

    听说--凡事预则立 吸取之前alpha冲刺的经验教训,也为了这次的beta冲刺可以更好更顺利地进行,更是为了迎接我们的新成员玮诗.我们开了一次组内会议,进行beta冲刺的规划. 上一张我们的合照: 具 ...

  2. 201621123040《Java程序设计》第七周学习总结

    1.本周学习总结 1.1思维导图:Java图形界面总结 2.书面作业 2.1GUI中的事件处理 2.1.1写出事件处理模型中最重要的几个关键词. 关键词:事件 事件源 事件监听器 2.1.2任意编写事 ...

  3. Android开发简易教程

    Android开发简易教程 Android 开发因为涉及到代码编辑.UI 布局.打包等工序,有一款好用的IDE非常重要.Google 最早提供了基于 Eclipse 的 ADT 作为开发工具,后来在2 ...

  4. MySQL 自关联查询

    定义表areas,结构如下 id atitle pid 因为省没有所属的省份,所以可以填写为null 城市所属的省份pid,填写省所对应的编号id 这就是自关联,表中的某一列,关联了这个表中的另外一列 ...

  5. tornado web高级开发项目

    抽屉官网:http://dig.chouti.com/ 一.配置(settings) settings = { 'template_path': 'views', #模板文件路径 'static_pa ...

  6. 洛谷 U10783 名字被和谐了

    https://www.luogu.org/problem/show?pid=U10783 题目背景 众所周知,我们称g是a的约数,当且仅当g是正数且a mod g = 0. 众所周知,若g既是a的约 ...

  7. Raid 5数据恢复原理以及raid 5数据恢复实际操作案例

    Raid 5数据恢复算法原理 要理解 raid 5数据恢复原理首先要先认识raid5,"分布式奇偶校验的独立磁盘结构"也就是我们称之为的raid 5数据恢复有一个概念需要理解,也就 ...

  8. LeetCode & Q189-Rotate Array-Easy

    Array Description: Rotate an array of n elements to the right by k steps. For example, with n = 7 an ...

  9. app测试中遇到问题总结

    工作总结: 1 这两天由于工作,需要进行抓包,使用了Charles,fidder,发现一个坑点: charles没有抓到返回值的时候,默认是不在列表显示请求信息的,能不能设置,我就不知道了,但是可以在 ...

  10. 关于kali linux 2.0的vmware tools的安装问题

    在安装好kali linux 2.0 后,首先要做的就是添加源并更新系统,否则会出现软件定位问题. 在kali 2.0中,vmware tools已经不能使用了,官方放了一个工具下载安装就好. 添加源 ...