比较厉害的dp.

网上题解都是利用了随机的条件,用了一个$O(n^4)$的dp,这里简单说一下。

用f(x,i,l,r)表示经过前i轮操作,[l,r]的所有数<=x,且l-1和r+1都>x的方案数。

转移:f(x,i,l,r)=f(x,i-1,l,r)*g(l,r)+f(x,i-1,j,r)*(j-1)+f(x,i-1,l,k)*(n-k),j<l,k>r

其中,g(l,r)=l*(l-1)/2+(r-l+1)*(r-l+2)/2+(n-r)*(n-r+1)/2

用个前缀和优化一下转移即可。

设h(x,i)表示最终位置i的数<=x的方案数,h(x,i)=$\sum_{l=1}^i\sum_{r=i}^nf(x,q,l,r)$

ans(i)=$\sum_xx*(h(x,i)-h(x-1,i))$

但是这样的做法不够优秀,有没有不利用随机的特性,严格$O(n^3)$的做法呢?

答案是有的。

其实很简单,观察发现转移的时候第一维是固定的,我们可以直接用dp(i,l,r)表示各种x的贡献和。

把上面ans(i)中的h展开,发现dp(i,l,r)=$\sum_x-f(x,i,l,r)$

转移没有变化,但初始化有变化。

初始化时的dp值怎么计算呢?

发现对于一段极长的区间[l,r],dp(0,l,r)=max(a(l)...a(r))-min(a(l-1),a(r+1)),对于非极长的区间dp(0,l,r)=0

发现#define一个for真好用233.

#include <cstdio>
#include <algorithm>
#define F(i,l,r) for(int i=l;i<=r;i++) const int N=,p=1e9+;
int n,q,a[N],f[][N][N],g[N][N],s1[][N][N],s2[][N][N]; int main() {
scanf("%d%d",&n,&q),a[]=a[n+]=1e9+;
F(i,,n) scanf("%d",&a[i]);
F(i,,n) {
int r=;
F(j,i,n) {
g[i][j]=i*(i-)/+(n-j)*(n-j+)/+(j-i+)*(j-i+)/,r=std::max(r,a[j]);
if(i==&&j==n) f[][i][j]=r;
else if(a[i-]>r&&a[j+]>r) f[][i][j]=(r-std::min(a[i-],a[j+])+p)%p;
}
}
F(i,,q) {
int s=i&,t=(i&)^;
F(j,,n) for(int k=n;k>=j;k--) s2[t][j][k]=(s2[t][j][k+]+1LL*f[t][j][k]*(n-k))%p;
F(j,,n) F(k,j,n) s1[t][j][k]=(s1[t][j-][k]+1LL*f[t][j][k]*(j-))%p,f[s][j][k]=(1LL*f[t][j][k]*g[j][k]+s1[t][j-][k]+s2[t][j][k+])%p;
}
F(i,,n) {int a1=; F(j,,i) F(k,i,n) a1=(a1+f[q&][j][k])%p; printf("%d%c",a1," \n"[i==n]);}
return ;
}

BZOJ4574 [Zjoi2016]线段树的更多相关文章

  1. bzoj4574:Zjoi2016线段树 dp

    传送门 题解传送门 //Achen #include<algorithm> #include<iostream> #include<cstring> #includ ...

  2. bzoj 4574: [Zjoi2016]线段树

    Description 小Yuuka遇到了一个题目:有一个序列a_1,a_2,?,a_n,q次操作,每次把一个区间内的数改成区间内的最大值,问 最后每个数是多少.小Yuuka很快地就使用了线段树解决了 ...

  3. 【UOJ#196】【BZOJ4574】[Zjoi2016]线段树

    题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=4574 http://uoj.ac/problem/196 考虑数字随机并且值域够大,我们 ...

  4. Luogu3352 ZJOI2016 线段树 概率、区间DP

    传送门 考虑对于每一个位置\(i\),计算所有可能的结果出现的概率. 定义一个区间\([l,r]\)为对于\(x\)的极大区间,当且仅当\(\max \limits _{i=l}^r \{a_i\} ...

  5. 【ZJOI2016】线段树

    [ZJOI2016]线段树 ZJOI的题神啊. 我们考虑计算每个位置\(p\),它在操作过后变成第\(x\)个数的操作序列数. 我们枚举\(x\).我们先得到了\(L_x,R_x\)表示最左边比\(x ...

  6. @loj - 2093@ 「ZJOI2016」线段树

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 小 Yuuka 遇到了一个题目:有一个序列 a1,a2,..., ...

  7. bzoj3932--可持久化线段树

    题目大意: 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si秒开始,在第 ...

  8. codevs 1082 线段树练习 3(区间维护)

    codevs 1082 线段树练习 3  时间限制: 3 s  空间限制: 128000 KB  题目等级 : 大师 Master 题目描述 Description 给你N个数,有两种操作: 1:给区 ...

  9. codevs 1576 最长上升子序列的线段树优化

    题目:codevs 1576 最长严格上升子序列 链接:http://codevs.cn/problem/1576/ 优化的地方是 1到i-1 中最大的 f[j]值,并且A[j]<A[i] .根 ...

随机推荐

  1. Comet之SSE(Server - Sent - Envent,服务器发送事件)

    1.SSE API 先要创建一个新的EventSource对象,并传进一个入口点: var source = new EventSource("myenvent.php"); △: ...

  2. Spring Cache扩展:注解失效时间+主动刷新缓存(二)

    *:first-child { margin-top: 0 !important; } body > *:last-child { margin-bottom: 0 !important; } ...

  3. Python内置函数(38)——zip

    英文文档: zip(*iterables) Make an iterator that aggregates elements from each of the iterables. Returns ...

  4. React Native学习(九)—— 使用Flexbox布局

    本文基于React Native 0.52 Demo上传到Git了,有需要可以看看,写了新内容会上传的.Git地址 https://github.com/gingerJY/React-Native-D ...

  5. Linux进程管理:后台启动进程和任务管理命令

    一.为什么要使程序在后台执行 我们的应用有时候要运行时间很长,如:几个小时甚至几个星期,我们可以让程序在后台一直跑. 让程序在后台运行的好处有: 终端关机不影响后台进程的运行.(不会终端一关机或者网络 ...

  6. 我的jquery validate 笔记

    <!DOCTYPE html><html lang="en">    <head>    <meta charset="UTF- ...

  7. mysql中的函数与存储过程

    mysql中的函数:1 mysql下创建函数: 1.1 语法: delimiter $$ -- 设置分隔符,默认是; 设置成其他符号,让编译器知道我们函数编写的结束,此处设置成$$ create fu ...

  8. pythonllk

    字符编码 数据类型 函数  装饰器  内置函数 迭代器 生成器 异常 反射 模块 类 对象 类的进阶 socket 进程线程 httphtmlcssJavaScriptjquery MysqlMysq ...

  9. Android视图重绘,使用invalidate还是requestLayout

    概述 在我们在进行自定义View的相关开发中,当我们更改了当前View的状态,比如大小,位置等,我们需要重新刷新整个界面,保证显示最新的状态.在Android中,让当前的视图重绘有两种方式,inval ...

  10. Hive&SqlServerql:inner join on条件中如果两边都是空值的情况下,关联结果中会把数据给过滤掉。

    今天遇到的一个大坑,话不多少,看sql和下边的查询结果: --问题:恰好把buildingid is null的记录给过滤掉 ),buildingid ),)); ); ); ); ); ); ); ...