比较厉害的dp.

网上题解都是利用了随机的条件,用了一个$O(n^4)$的dp,这里简单说一下。

用f(x,i,l,r)表示经过前i轮操作,[l,r]的所有数<=x,且l-1和r+1都>x的方案数。

转移:f(x,i,l,r)=f(x,i-1,l,r)*g(l,r)+f(x,i-1,j,r)*(j-1)+f(x,i-1,l,k)*(n-k),j<l,k>r

其中,g(l,r)=l*(l-1)/2+(r-l+1)*(r-l+2)/2+(n-r)*(n-r+1)/2

用个前缀和优化一下转移即可。

设h(x,i)表示最终位置i的数<=x的方案数,h(x,i)=$\sum_{l=1}^i\sum_{r=i}^nf(x,q,l,r)$

ans(i)=$\sum_xx*(h(x,i)-h(x-1,i))$

但是这样的做法不够优秀,有没有不利用随机的特性,严格$O(n^3)$的做法呢?

答案是有的。

其实很简单,观察发现转移的时候第一维是固定的,我们可以直接用dp(i,l,r)表示各种x的贡献和。

把上面ans(i)中的h展开,发现dp(i,l,r)=$\sum_x-f(x,i,l,r)$

转移没有变化,但初始化有变化。

初始化时的dp值怎么计算呢?

发现对于一段极长的区间[l,r],dp(0,l,r)=max(a(l)...a(r))-min(a(l-1),a(r+1)),对于非极长的区间dp(0,l,r)=0

发现#define一个for真好用233.

#include <cstdio>
#include <algorithm>
#define F(i,l,r) for(int i=l;i<=r;i++) const int N=,p=1e9+;
int n,q,a[N],f[][N][N],g[N][N],s1[][N][N],s2[][N][N]; int main() {
scanf("%d%d",&n,&q),a[]=a[n+]=1e9+;
F(i,,n) scanf("%d",&a[i]);
F(i,,n) {
int r=;
F(j,i,n) {
g[i][j]=i*(i-)/+(n-j)*(n-j+)/+(j-i+)*(j-i+)/,r=std::max(r,a[j]);
if(i==&&j==n) f[][i][j]=r;
else if(a[i-]>r&&a[j+]>r) f[][i][j]=(r-std::min(a[i-],a[j+])+p)%p;
}
}
F(i,,q) {
int s=i&,t=(i&)^;
F(j,,n) for(int k=n;k>=j;k--) s2[t][j][k]=(s2[t][j][k+]+1LL*f[t][j][k]*(n-k))%p;
F(j,,n) F(k,j,n) s1[t][j][k]=(s1[t][j-][k]+1LL*f[t][j][k]*(j-))%p,f[s][j][k]=(1LL*f[t][j][k]*g[j][k]+s1[t][j-][k]+s2[t][j][k+])%p;
}
F(i,,n) {int a1=; F(j,,i) F(k,i,n) a1=(a1+f[q&][j][k])%p; printf("%d%c",a1," \n"[i==n]);}
return ;
}

BZOJ4574 [Zjoi2016]线段树的更多相关文章

  1. bzoj4574:Zjoi2016线段树 dp

    传送门 题解传送门 //Achen #include<algorithm> #include<iostream> #include<cstring> #includ ...

  2. bzoj 4574: [Zjoi2016]线段树

    Description 小Yuuka遇到了一个题目:有一个序列a_1,a_2,?,a_n,q次操作,每次把一个区间内的数改成区间内的最大值,问 最后每个数是多少.小Yuuka很快地就使用了线段树解决了 ...

  3. 【UOJ#196】【BZOJ4574】[Zjoi2016]线段树

    题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=4574 http://uoj.ac/problem/196 考虑数字随机并且值域够大,我们 ...

  4. Luogu3352 ZJOI2016 线段树 概率、区间DP

    传送门 考虑对于每一个位置\(i\),计算所有可能的结果出现的概率. 定义一个区间\([l,r]\)为对于\(x\)的极大区间,当且仅当\(\max \limits _{i=l}^r \{a_i\} ...

  5. 【ZJOI2016】线段树

    [ZJOI2016]线段树 ZJOI的题神啊. 我们考虑计算每个位置\(p\),它在操作过后变成第\(x\)个数的操作序列数. 我们枚举\(x\).我们先得到了\(L_x,R_x\)表示最左边比\(x ...

  6. @loj - 2093@ 「ZJOI2016」线段树

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 小 Yuuka 遇到了一个题目:有一个序列 a1,a2,..., ...

  7. bzoj3932--可持久化线段树

    题目大意: 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si秒开始,在第 ...

  8. codevs 1082 线段树练习 3(区间维护)

    codevs 1082 线段树练习 3  时间限制: 3 s  空间限制: 128000 KB  题目等级 : 大师 Master 题目描述 Description 给你N个数,有两种操作: 1:给区 ...

  9. codevs 1576 最长上升子序列的线段树优化

    题目:codevs 1576 最长严格上升子序列 链接:http://codevs.cn/problem/1576/ 优化的地方是 1到i-1 中最大的 f[j]值,并且A[j]<A[i] .根 ...

随机推荐

  1. EMC CX4-480服务器raid磁盘数据恢复案例

    [用户信息]上海某公司 [故障描述]需要进行数据恢复的设备是一台EMC CX4的存储服务器,因为硬盘出现故障导致整个存储阵列瘫痪.整个LUN是由7块1TB的硬盘组成的RAID 5.但服务器共有10块硬 ...

  2. MariaDB/MySQL存储过程和函数

    本文目录:1.创建存储过程.函数 1.1 存储过程的IN.OUT和INOUT2.修改和删除存储过程.函数3.查看存储过程.函数信息 在MySQL/MariaDB中,存储过程(stored proced ...

  3. signalR 消息推送

    业务情景一:上传报表,上传excel.如果excel的数据量很大,上万条,上十万条数据,那么这个上传请求必然是个耗时请求.用户上传之后,很关心上传的进度和结果. 业务情景二:站内消息提醒,实时有效地接 ...

  4. clang++ 链接问题 和 VS Code

    clang++ 链接问题 和 VS Code 如果你在windows上使用clang 并且同时安装有vs和mingw, clang链接是会自动使用msvs, 链接时会有LINK error LINK ...

  5. LeetCode & Q283-Move Zeroes-Easy

    Array Two Pointers Description: Given an array nums, write a function to move all 0's to the end of ...

  6. 微信小程序tab(swiper)切换

    <- wxml -> <view class="youhui"> <view ' bindtap='toggle'> 未使用 </view ...

  7. WPF 自定义DataGrid控件样式

    内容转自https://www.cnblogs.com/xiaogangqq123/archive/2012/05/07/2487166.html 一.DataGrid基本样式(一) 小刚已经把Dat ...

  8. Java Jar包压缩、解压使用指南

    什么是jar包 JAR(Java Archive)是Java的归档文件,它是一种与平台无关的文件格式,它允许将许多文件组合成一个压缩文件. 如何打/解包 使用jdk/bin/jar.exe工具,配置完 ...

  9. api-gateway实践(10)新服务网关 - OpenID Connect

    网关指南: https://help.aliyun.com/document_detail/29487.html?spm=5176.doc48835.6.550.23Oqbl 网关控制台: https ...

  10. Spring Security 入门(1-4-2)Spring Security - 认证过程之AuthenticationProvider的扩展补充说明

    1.用户信息从数据库获取 通常我们的用户信息都不会向第一节示例中那样简单的写在配置文件中,而是从其它存储位置获取,比如数据库.根据之前的介绍我们知道用户信息是通过 UserDetailsService ...