hdu 5429(大数模板)
题意:判断是否是等比数列
a[i] * a[i] = a[i+1] * a[i-1] + 部分为0 的情况
/* 表示还没学java.... ,模板来自NK_test
#include <iostream>
#include <cstring>
using namespace std; #define DIGIT 4 //四位隔开,即万进制
#define DEPTH 10000 //万进制
#define MAX 251 //题目最大位数/4,要不大直接设为最大位数也行
typedef int bignum_t[MAX+1]; /************************************************************************/
/* 读取操作数,对操作数进行处理存储在数组里 */
/************************************************************************/
int read(bignum_t a,istream&is=cin)
{
char buf[MAX*DIGIT+1],ch ;
int i,j ;
memset((void*)a,0,sizeof(bignum_t));
if(!(is>>buf))return 0 ;
for(a[0]=strlen(buf),i=a[0]/2-1; i>=0; i--)
ch=buf[i],buf[i]=buf[a[0]-1-i],buf[a[0]-1-i]=ch ;
for(a[0]=(a[0]+DIGIT-1)/DIGIT,j=strlen(buf); j<a[0]*DIGIT; buf[j++]='0');
for(i=1; i<=a[0]; i++)
for(a[i]=0,j=0; j<DIGIT; j++)
a[i]=a[i]*10+buf[i*DIGIT-1-j]-'0' ;
for(; !a[a[0]]&&a[0]>1; a[0]--);
return 1 ;
} void write(const bignum_t a,ostream&os=cout)
{
int i,j ;
for(os<<a[i=a[0]],i--; i; i--)
for(j=DEPTH/10; j; j/=10)
os<<a[i]/j%10 ;
} int comp(const bignum_t a,const bignum_t b)
{
int i ;
if(a[0]!=b[0])
return a[0]-b[0];
for(i=a[0]; i; i--)
if(a[i]!=b[i])
return a[i]-b[i];
return 0 ;
} int comp(const bignum_t a,const int b)
{
int c[12]=
{
1
}
;
for(c[1]=b; c[c[0]]>=DEPTH; c[c[0]+1]=c[c[0]]/DEPTH,c[c[0]]%=DEPTH,c[0]++);
return comp(a,c);
} int comp(const bignum_t a,const int c,const int d,const bignum_t b)
{
int i,t=0,O=-DEPTH*2 ;
if(b[0]-a[0]<d&&c)
return 1 ;
for(i=b[0]; i>d; i--)
{
t=t*DEPTH+a[i-d]*c-b[i];
if(t>0)return 1 ;
if(t<O)return 0 ;
}
for(i=d; i; i--)
{
t=t*DEPTH-b[i];
if(t>0)return 1 ;
if(t<O)return 0 ;
}
return t>0 ;
}
/************************************************************************/
/* 大数与大数相加 */
/************************************************************************/
void add(bignum_t a,const bignum_t b)
{
int i ;
for(i=1; i<=b[0]; i++)
if((a[i]+=b[i])>=DEPTH)
a[i]-=DEPTH,a[i+1]++;
if(b[0]>=a[0])
a[0]=b[0];
else
for(; a[i]>=DEPTH&&i<a[0]; a[i]-=DEPTH,i++,a[i]++);
a[0]+=(a[a[0]+1]>0);
}
/************************************************************************/
/* 大数与小数相加 */
/************************************************************************/
void add(bignum_t a,const int b)
{
int i=1 ;
for(a[1]+=b; a[i]>=DEPTH&&i<a[0]; a[i+1]+=a[i]/DEPTH,a[i]%=DEPTH,i++);
for(; a[a[0]]>=DEPTH; a[a[0]+1]=a[a[0]]/DEPTH,a[a[0]]%=DEPTH,a[0]++);
}
/************************************************************************/
/* 大数相减(被减数>=减数) */
/************************************************************************/
void sub(bignum_t a,const bignum_t b)
{
int i ;
for(i=1; i<=b[0]; i++)
if((a[i]-=b[i])<0)
a[i+1]--,a[i]+=DEPTH ;
for(; a[i]<0; a[i]+=DEPTH,i++,a[i]--);
for(; !a[a[0]]&&a[0]>1; a[0]--);
}
/************************************************************************/
/* 大数减去小数(被减数>=减数) */
/************************************************************************/
void sub(bignum_t a,const int b)
{
int i=1 ;
for(a[1]-=b; a[i]<0; a[i+1]+=(a[i]-DEPTH+1)/DEPTH,a[i]-=(a[i]-DEPTH+1)/DEPTH*DEPTH,i++);
for(; !a[a[0]]&&a[0]>1; a[0]--);
} void sub(bignum_t a,const bignum_t b,const int c,const int d)
{
int i,O=b[0]+d ;
for(i=1+d; i<=O; i++)
if((a[i]-=b[i-d]*c)<0)
a[i+1]+=(a[i]-DEPTH+1)/DEPTH,a[i]-=(a[i]-DEPTH+1)/DEPTH*DEPTH ;
for(; a[i]<0; a[i+1]+=(a[i]-DEPTH+1)/DEPTH,a[i]-=(a[i]-DEPTH+1)/DEPTH*DEPTH,i++);
for(; !a[a[0]]&&a[0]>1; a[0]--);
}
/************************************************************************/
/* 大数相乘,读入被乘数a,乘数b,结果保存在c[] */
/************************************************************************/
void mul(bignum_t c,const bignum_t a,const bignum_t b)
{
int i,j ;
memset((void*)c,0,sizeof(bignum_t));
for(c[0]=a[0]+b[0]-1,i=1; i<=a[0]; i++)
for(j=1; j<=b[0]; j++)
if((c[i+j-1]+=a[i]*b[j])>=DEPTH)
c[i+j]+=c[i+j-1]/DEPTH,c[i+j-1]%=DEPTH ;
for(c[0]+=(c[c[0]+1]>0); !c[c[0]]&&c[0]>1; c[0]--);
}
/************************************************************************/
/* 大数乘以小数,读入被乘数a,乘数b,结果保存在被乘数 */
/************************************************************************/
void mul(bignum_t a,const int b)
{
int i ;
for(a[1]*=b,i=2; i<=a[0]; i++)
{
a[i]*=b ;
if(a[i-1]>=DEPTH)
a[i]+=a[i-1]/DEPTH,a[i-1]%=DEPTH ;
}
for(; a[a[0]]>=DEPTH; a[a[0]+1]=a[a[0]]/DEPTH,a[a[0]]%=DEPTH,a[0]++);
for(; !a[a[0]]&&a[0]>1; a[0]--);
} void mul(bignum_t b,const bignum_t a,const int c,const int d)
{
int i ;
memset((void*)b,0,sizeof(bignum_t));
for(b[0]=a[0]+d,i=d+1; i<=b[0]; i++)
if((b[i]+=a[i-d]*c)>=DEPTH)
b[i+1]+=b[i]/DEPTH,b[i]%=DEPTH ;
for(; b[b[0]+1]; b[0]++,b[b[0]+1]=b[b[0]]/DEPTH,b[b[0]]%=DEPTH);
for(; !b[b[0]]&&b[0]>1; b[0]--);
}
/**************************************************************************/
/* 大数相除,读入被除数a,除数b,结果保存在c[]数组 */
/* 需要comp()函数 */
/**************************************************************************/
void div(bignum_t c,bignum_t a,const bignum_t b)
{
int h,l,m,i ;
memset((void*)c,0,sizeof(bignum_t));
c[0]=(b[0]<a[0]+1)?(a[0]-b[0]+2):1 ;
for(i=c[0]; i; sub(a,b,c[i]=m,i-1),i--)
for(h=DEPTH-1,l=0,m=(h+l+1)>>1; h>l; m=(h+l+1)>>1)
if(comp(b,m,i-1,a))h=m-1 ;
else l=m ;
for(; !c[c[0]]&&c[0]>1; c[0]--);
c[0]=c[0]>1?c[0]:1 ;
} void div(bignum_t a,const int b,int&c)
{
int i ;
for(c=0,i=a[0]; i; c=c*DEPTH+a[i],a[i]=c/b,c%=b,i--);
for(; !a[a[0]]&&a[0]>1; a[0]--);
}
/************************************************************************/
/* 大数平方根,读入大数a,结果保存在b[]数组里 */
/* 需要comp()函数 */
/************************************************************************/
void sqrt(bignum_t b,bignum_t a)
{
int h,l,m,i ;
memset((void*)b,0,sizeof(bignum_t));
for(i=b[0]=(a[0]+1)>>1; i; sub(a,b,m,i-1),b[i]+=m,i--)
for(h=DEPTH-1,l=0,b[i]=m=(h+l+1)>>1; h>l; b[i]=m=(h+l+1)>>1)
if(comp(b,m,i-1,a))h=m-1 ;
else l=m ;
for(; !b[b[0]]&&b[0]>1; b[0]--);
for(i=1; i<=b[0]; b[i++]>>=1);
}
/************************************************************************/
/* 返回大数的长度 */
/************************************************************************/
int length(const bignum_t a)
{
int t,ret ;
for(ret=(a[0]-1)*DIGIT,t=a[a[0]]; t; t/=10,ret++);
return ret>0?ret:1 ;
}
/************************************************************************/
/* 返回指定位置的数字,从低位开始数到第b位,返回b位上的数 */
/************************************************************************/
int digit(const bignum_t a,const int b)
{
int i,ret ;
for(ret=a[(b-1)/DIGIT+1],i=(b-1)%DIGIT; i; ret/=10,i--);
return ret%10 ;
}
/************************************************************************/
/* 返回大数末尾0的个数 */
/************************************************************************/
int zeronum(const bignum_t a)
{
int ret,t ;
for(ret=0; !a[ret+1]; ret++);
for(t=a[ret+1],ret*=DIGIT; !(t%10); t/=10,ret++);
return ret ;
} void comp(int*a,const int l,const int h,const int d)
{
int i,j,t ;
for(i=l; i<=h; i++)
for(t=i,j=2; t>1; j++)
while(!(t%j))
a[j]+=d,t/=j ;
} void convert(int*a,const int h,bignum_t b)
{
int i,j,t=1 ;
memset(b,0,sizeof(bignum_t));
for(b[0]=b[1]=1,i=2; i<=h; i++)
if(a[i])
for(j=a[i]; j; t*=i,j--)
if(t*i>DEPTH)
mul(b,t),t=1 ;
mul(b,t);
}
/************************************************************************/
/* 组合数 */
/************************************************************************/
void combination(bignum_t a,int m,int n)
{
int*t=new int[m+1];
memset((void*)t,0,sizeof(int)*(m+1));
comp(t,n+1,m,1);
comp(t,2,m-n,-1);
convert(t,m,a);
delete[]t ;
}
/************************************************************************/
/* 排列数 */
/************************************************************************/
void permutation(bignum_t a,int m,int n)
{
int i,t=1 ;
memset(a,0,sizeof(bignum_t));
a[0]=a[1]=1 ;
for(i=m-n+1; i<=m; t*=i++)
if(t*i>DEPTH)
mul(a,t),t=1 ;
mul(a,t);
} #define SGN(x) ((x)>0?1:((x)<0?-1:0))
#define ABS(x) ((x)>0?(x):-(x)) int read(bignum_t a,int&sgn,istream&is=cin)
{
char str[MAX*DIGIT+2],ch,*buf ;
int i,j ;
memset((void*)a,0,sizeof(bignum_t));
if(!(is>>str))return 0 ;
buf=str,sgn=1 ;
if(*buf=='-')sgn=-1,buf++;
for(a[0]=strlen(buf),i=a[0]/2-1; i>=0; i--)
ch=buf[i],buf[i]=buf[a[0]-1-i],buf[a[0]-1-i]=ch ;
for(a[0]=(a[0]+DIGIT-1)/DIGIT,j=strlen(buf); j<a[0]*DIGIT; buf[j++]='0');
for(i=1; i<=a[0]; i++)
for(a[i]=0,j=0; j<DIGIT; j++)
a[i]=a[i]*10+buf[i*DIGIT-1-j]-'0' ;
for(; !a[a[0]]&&a[0]>1; a[0]--);
if(a[0]==1&&!a[1])sgn=0 ;
return 1 ;
}
struct bignum
{
bignum_t num ;
int sgn ;
public :
inline bignum()
{
memset(num,0,sizeof(bignum_t));
num[0]=1 ;
sgn=0 ;
}
inline int operator!()
{
return num[0]==1&&!num[1];
}
inline bignum&operator=(const bignum&a)
{
memcpy(num,a.num,sizeof(bignum_t));
sgn=a.sgn ;
return*this ;
}
inline bignum&operator=(const int a)
{
memset(num,0,sizeof(bignum_t));
num[0]=1 ;
sgn=SGN (a);
add(num,sgn*a);
return*this ;
}
;
inline bignum&operator+=(const bignum&a)
{
if(sgn==a.sgn)add(num,a.num);
else if
(sgn&&a.sgn)
{
int ret=comp(num,a.num);
if(ret>0)sub(num,a.num);
else if(ret<0)
{
bignum_t t ;
memcpy(t,num,sizeof(bignum_t));
memcpy(num,a.num,sizeof(bignum_t));
sub (num,t);
sgn=a.sgn ;
}
else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0 ;
}
else if(!sgn)
memcpy(num,a.num,sizeof(bignum_t)),sgn=a.sgn ;
return*this ;
}
inline bignum&operator+=(const int a)
{
if(sgn*a>0)add(num,ABS(a));
else if(sgn&&a)
{
int ret=comp(num,ABS(a));
if(ret>0)sub(num,ABS(a));
else if(ret<0)
{
bignum_t t ;
memcpy(t,num,sizeof(bignum_t));
memset(num,0,sizeof(bignum_t));
num[0]=1 ;
add(num,ABS (a));
sgn=-sgn ;
sub(num,t);
}
else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0 ;
}
else if
(!sgn)sgn=SGN(a),add(num,ABS(a));
return*this ;
}
inline bignum operator+(const bignum&a)
{
bignum ret ;
memcpy(ret.num,num,sizeof (bignum_t));
ret.sgn=sgn ;
ret+=a ;
return ret ;
}
inline bignum operator+(const int a)
{
bignum ret ;
memcpy(ret.num,num,sizeof (bignum_t));
ret.sgn=sgn ;
ret+=a ;
return ret ;
}
inline bignum&operator-=(const bignum&a)
{
if(sgn*a.sgn<0)add(num,a.num);
else if
(sgn&&a.sgn)
{
int ret=comp(num,a.num);
if(ret>0)sub(num,a.num);
else if(ret<0)
{
bignum_t t ;
memcpy(t,num,sizeof(bignum_t));
memcpy(num,a.num,sizeof(bignum_t));
sub(num,t);
sgn=-sgn ;
}
else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0 ;
}
else if(!sgn)add (num,a.num),sgn=-a.sgn ;
return*this ;
}
inline bignum&operator-=(const int a)
{
if(sgn*a<0)add(num,ABS(a));
else if(sgn&&a)
{
int ret=comp(num,ABS(a));
if(ret>0)sub(num,ABS(a));
else if(ret<0)
{
bignum_t t ;
memcpy(t,num,sizeof(bignum_t));
memset(num,0,sizeof(bignum_t));
num[0]=1 ;
add(num,ABS(a));
sub(num,t);
sgn=-sgn ;
}
else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0 ;
}
else if
(!sgn)sgn=-SGN(a),add(num,ABS(a));
return*this ;
}
inline bignum operator-(const bignum&a)
{
bignum ret ;
memcpy(ret.num,num,sizeof(bignum_t));
ret.sgn=sgn ;
ret-=a ;
return ret ;
}
inline bignum operator-(const int a)
{
bignum ret ;
memcpy(ret.num,num,sizeof(bignum_t));
ret.sgn=sgn ;
ret-=a ;
return ret ;
}
inline bignum&operator*=(const bignum&a)
{
bignum_t t ;
mul(t,num,a.num);
memcpy(num,t,sizeof(bignum_t));
sgn*=a.sgn ;
return*this ;
}
inline bignum&operator*=(const int a)
{
mul(num,ABS(a));
sgn*=SGN(a);
return*this ;
}
inline bignum operator*(const bignum&a)
{
bignum ret ;
mul(ret.num,num,a.num);
ret.sgn=sgn*a.sgn ;
return ret ;
}
inline bignum operator*(const int a)
{
bignum ret ;
memcpy(ret.num,num,sizeof (bignum_t));
mul(ret.num,ABS(a));
ret.sgn=sgn*SGN(a);
return ret ;
}
inline bignum&operator/=(const bignum&a)
{
bignum_t t ;
div(t,num,a.num);
memcpy (num,t,sizeof(bignum_t));
sgn=(num[0]==1&&!num[1])?0:sgn*a.sgn ;
return*this ;
}
inline bignum&operator/=(const int a)
{
int t ;
div(num,ABS(a),t);
sgn=(num[0]==1&&!num [1])?0:sgn*SGN(a);
return*this ;
}
inline bignum operator/(const bignum&a)
{
bignum ret ;
bignum_t t ;
memcpy(t,num,sizeof(bignum_t));
div(ret.num,t,a.num);
ret.sgn=(ret.num[0]==1&&!ret.num[1])?0:sgn*a.sgn ;
return ret ;
}
inline bignum operator/(const int a)
{
bignum ret ;
int t ;
memcpy(ret.num,num,sizeof(bignum_t));
div(ret.num,ABS(a),t);
ret.sgn=(ret.num[0]==1&&!ret.num[1])?0:sgn*SGN(a);
return ret ;
}
inline bignum&operator%=(const bignum&a)
{
bignum_t t ;
div(t,num,a.num);
if(num[0]==1&&!num[1])sgn=0 ;
return*this ;
}
inline int operator%=(const int a)
{
int t ;
div(num,ABS(a),t);
memset(num,0,sizeof (bignum_t));
num[0]=1 ;
add(num,t);
return t ;
}
inline bignum operator%(const bignum&a)
{
bignum ret ;
bignum_t t ;
memcpy(ret.num,num,sizeof(bignum_t));
div(t,ret.num,a.num);
ret.sgn=(ret.num[0]==1&&!ret.num [1])?0:sgn ;
return ret ;
}
inline int operator%(const int a)
{
bignum ret ;
int t ;
memcpy(ret.num,num,sizeof(bignum_t));
div(ret.num,ABS(a),t);
memset(ret.num,0,sizeof(bignum_t));
ret.num[0]=1 ;
add(ret.num,t);
return t ;
}
inline bignum&operator++()
{
*this+=1 ;
return*this ;
}
inline bignum&operator--()
{
*this-=1 ;
return*this ;
}
;
inline int operator>(const bignum&a)
{
return sgn>0?(a.sgn>0?comp(num,a.num)>0:1):(sgn<0?(a.sgn<0?comp(num,a.num)<0:0):a.sgn<0);
}
inline int operator>(const int a)
{
return sgn>0?(a>0?comp(num,a)>0:1):(sgn<0?(a<0?comp(num,-a)<0:0):a<0);
}
inline int operator>=(const bignum&a)
{
return sgn>0?(a.sgn>0?comp(num,a.num)>=0:1):(sgn<0?(a.sgn<0?comp(num,a.num)<=0:0):a.sgn<=0);
}
inline int operator>=(const int a)
{
return sgn>0?(a>0?comp(num,a)>=0:1):(sgn<0?(a<0?comp(num,-a)<=0:0):a<=0);
}
inline int operator<(const bignum&a)
{
return sgn<0?(a.sgn<0?comp(num,a.num)>0:1):(sgn>0?(a.sgn>0?comp(num,a.num)<0:0):a.sgn>0);
}
inline int operator<(const int a)
{
return sgn<0?(a<0?comp(num,-a)>0:1):(sgn>0?(a>0?comp(num,a)<0:0):a>0);
}
inline int operator<=(const bignum&a)
{
return sgn<0?(a.sgn<0?comp(num,a.num)>=0:1):(sgn>0?(a.sgn>0?comp(num,a.num)<=0:0):a.sgn>=0);
}
inline int operator<=(const int a)
{
return sgn<0?(a<0?comp(num,-a)>=0:1):
(sgn>0?(a>0?comp(num,a)<=0:0):a>=0);
}
inline int operator==(const bignum&a)
{
return(sgn==a.sgn)?!comp(num,a.num):0 ;
}
inline int operator==(const int a)
{
return(sgn*a>=0)?!comp(num,ABS(a)):0 ;
}
inline int operator!=(const bignum&a)
{
return(sgn==a.sgn)?comp(num,a.num):1 ;
}
inline int operator!=(const int a)
{
return(sgn*a>=0)?comp(num,ABS(a)):1 ;
}
inline int operator[](const int a)
{
return digit(num,a);
}
friend inline istream&operator>>(istream&is,bignum&a)
{
read(a.num,a.sgn,is);
return is ;
}
friend inline ostream&operator<<(ostream&os,const bignum&a)
{
if(a.sgn<0)
os<<'-' ;
write(a.num,os);
return os ;
}
friend inline bignum sqrt(const bignum&a)
{
bignum ret ;
bignum_t t ;
memcpy(t,a.num,sizeof(bignum_t));
sqrt(ret.num,t);
ret.sgn=ret.num[0]!=1||ret.num[1];
return ret ;
}
friend inline bignum sqrt(const bignum&a,bignum&b)
{
bignum ret ;
memcpy(b.num,a.num,sizeof(bignum_t));
sqrt(ret.num,b.num);
ret.sgn=ret.num[0]!=1||ret.num[1];
b.sgn=b.num[0]!=1||ret.num[1];
return ret ;
}
inline int length()
{
return :: length(num);
}
inline int zeronum()
{
return :: zeronum(num);
}
inline bignum C(const int m,const int n)
{
combination(num,m,n);
sgn=1 ;
return*this ;
}
inline bignum P(const int m,const int n)
{
permutation(num,m,n);
sgn=1 ;
return*this ;
}
}; bignum a[100],Zero;
int main()
{
int T;
cin>>T;
while(T--)
{
int n;
cin >> n;
int num = 0;
Zero = 0;
for(int i = 1; i <= n; i++)
{
cin>>a[i];
if(a[i] == Zero)
num ++;
}
if(num > 0 && num != n)
{
cout<<"No"<<endl;
continue;
}
int flag = 0;
for(int i = 2; i < n; i++)
{
if(a[i] * a[i] != a[i+1]*a[i-1])
{
flag = 1;
break;
}
}
if(flag)
cout<<"No"<<endl;
else
cout<<"Yes"<<endl;
}
return 0;
}
hdu 5429(大数模板)的更多相关文章
- hdu 5429 Geometric Progression(存个大数模板)
Problem Description Determine whether a sequence is a Geometric progression or not. In mathematics, ...
- HDU 1134 Game of Connections(卡特兰数+大数模板)
题目代号:HDU 1134 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1134 Game of Connections Time Limit: 20 ...
- Hdu 4762 网络赛 高精度大数模板+概率
注意题目中的这句话he put the strawberries on the cake randomly one by one,第一次选择草莓其实有N个可能,以某一个草莓为开头,然后顺序的随机摆放, ...
- 【集训笔记】【大数模板】特殊的数 【Catalan数】【HDOJ1133【HDOJ1134【HDOJ1130
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3324 http://blog.csdn.net/xymscau/artic ...
- hdu1042(大数模板)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1042 在网上找了个大数模板方便以后用得到. #include<iostream> #inc ...
- hdu 5047 大数找规律
http://acm.hdu.edu.cn/showproblem.php?pid=5047 找规律 信kuangbin,能AC #include <stdio.h> #include & ...
- hdu 5050 大数
http://acm.hdu.edu.cn/showproblem.php?pid=5050 大数模板最大公约数 信kuangbin,能AC #include <cstdio> #incl ...
- 大数模板 (C ++)
上次BC遇到一个大数题目,没有大数模板和不会使用JAVA的同学们GG了,赛后从队友哪里骗出大数模板.2333333,真的炒鸡nice(就是有点长),贴出来分享一下好辣. //可以处理字符串前导零 #i ...
- hdu 4759 大数+找规律 ***
题目意思很简单. 就是洗牌,抽出奇数和偶数,要么奇数放前面,要么偶数放前面. 总共2^N张牌. 需要问的是,给了A X B Y 问经过若干洗牌后,第A个位置是X,第B个位置是Y 是不是可能的. Ja ...
随机推荐
- ios中录音功能的实现AudioSession的使用
这个星期我完成了一个具有基本录音和回放的功能,一开始也不知道从何入手,也查找了很多相关的资料.与此同时,我也学会了很多关于音频方面的东西,这也对后面的录音配置有一定的帮助.其中参照了<iPhon ...
- Node入门教程(7)第五章:node 模块化(下) npm与yarn详解
Node的包管理器 JavaScript缺少包结构的定义,而CommonJS定义了一系列的规范.而NPM的出现则是为了在CommonJS规范的基础上,实现解决包的安装卸载,依赖管理,版本管理等问题. ...
- css中的em 简单教程 -- 转
先附上原作的地址: https://www.w3cplus.com/css/px-to-em 习惯性的复制一遍~~~~ -------------------------------我是分界线---- ...
- django models的点查询/跨表查询/双下划线查询
django models 在日常的编程中,我们需要建立数据库模型 而往往会用到表与表之间的关系,这就比单表取数据要复杂一些 在多表之间发生关系的情形下,我们如何利用models提供的API的特性获得 ...
- java的<<左移,>>右移,>>>无符号右移
>>右移 右移,道在二进制中,假设用一个32位的Int表示一个64,那么高位就都是0,所以当我们把整个二进制数右移,如0100000 >> 2 = 0001000,可以看到右移 ...
- js控制表格实时编辑
点击添加,在表格的最后一行添加一行表单元素,右侧按钮变为保存和取消.(点击保存,数据用ajax无刷新添加到界面,点击取消,取消此行的添加.)点击编辑,在本行改为表单,带有原来的值,右侧按钮变为确认和取 ...
- android- 远程调试
最近由于要在另外一台android设备上调试代码,在本机PC上查看其log.两台机器离的比较远, 无法用usb直接连接,于是在网上找了很多资料,最找使用adb connect方法解决了该问题.解决过程 ...
- Python 自动化 第一周
1.Python简介 1.1.Python介绍 python的创始人为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,吉多·范罗苏姆(中文名字:龟叔)为了在阿姆斯特丹打发时 ...
- 实现GridControl行动态改变行字体和背景色
需求:开发时遇到一个问题, 需要根据GridControl行数据不同,实现不同的效果 在gridView的RowCellStyle的事件中实现,需要的效果 private void gridView1 ...
- 转:java中Vector的使用
转:https://www.cnblogs.com/zhaoyan001/p/6077492.html Vector 可实现自动增长的对象数组. java.util.vector提供了向量类(vect ...