题意:给定一个n个点m条边的有向无环图,你要选出最多的点,并且满足任意两点之间都不存在通路。2)输出每个点选了它之后还是否有最优解。   n<=100 m<=1000

题解:每个点拆两个点,把每个点向它能走到点连边,然后最小割/二分图匹配。

这题想了好久,后来想出这个模型感觉没问题.....

第二个问貌似把每个点都强行不割跑一遍应该不会T吧.....

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#define S 0
#define T 201
#define INF 2000000000
using namespace std;
inline int read()
{
int x = , f = ; char ch = getchar();
while(ch < '' || ch > ''){ if(ch == '-') f = -; ch = getchar();}
while(ch >= '' && ch <= ''){x = x * + ch - '';ch = getchar();}
return x * f;
} int mark[T+];
int head[T+],cnt=,n,m,ans,cc=,thead[T+],q[T+],top,d[T+];
struct edge{
int to,next,w;
}e[T*T+];
struct tedge{
int to,next;
}e2[]; inline void ins(int f,int t){e2[++cc]=(tedge){t,thead[f]};thead[f]=cc;}
inline void ins(int f,int t,int w)
{
e[++cnt]=(edge){t,head[f],w};head[f]=cnt;
e[++cnt]=(edge){f,head[t],};head[t]=cnt;
} void build(int x,int from)
{
if(mark[x]!=from&&x!=from) ins(from,x+n,INF),mark[x]=from;
for(int i=thead[x];i;i=e2[i].next)
if(mark[e2[i].to]!=from)
build(e2[i].to,from);
} int dfs(int x,int f)
{
if(x==T)return f;
int used=;
for(int i=head[x];i;i=e[i].next)
if(e[i].w&&d[e[i].to]==d[x]+)
{
int w=dfs(e[i].to,min(f-used,e[i].w));
used+=w;e[i].w-=w;e[i^].w+=w;
if(used==f)return f;
}
return used;
} bool bfs()
{
memset(d,,sizeof(d));int i,j;
for(d[q[i=top=]=S]=;i<=top;++i)
for(int j=head[q[i]];j;j=e[j].next)
if(e[j].w&&!d[e[j].to])
d[q[++top]=e[j].to]=d[q[i]]+;
return d[T];
} int main()
{
ans=n=read();m=read();
for(int i=;i<=m;i++)
{
int x=read(),y=read();
ins(y,x);
}
for(int i=;i<=n;i++)build(i,i);
for(int i=;i<=n;i++)ins(S,i,),ins(i+n,T,);
while(bfs())ans-=dfs(S,INF);
cout<<ans;
return ;
}

[bzoj1143][CTSC2008]祭祀的更多相关文章

  1. BZOJ1143 [CTSC2008]祭祀river 【二分图匹配】

    1143: [CTSC2008]祭祀river Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 3236  Solved: 1651 [Submit] ...

  2. BZOJ1143 [CTSC2008]祭祀river 二分图匹配 最小链覆盖

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1143 题意概括 给出一个有向图.求最小链覆盖. 题解 首先说两个概念: 链:一条链是一些点的集合, ...

  3. bzoj1143: [CTSC2008]祭祀river 最长反链

    题意:在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都会在水面上举办盛大的祭祀活动.我们可以把Y族居住地水系看成一个由岔口和河道组成的网络.每条河道连 ...

  4. [BZOJ1143][CTSC2008]祭祀river(Dilworth定理+二分图匹配)

    题意:给你一张n个点的DAG,最大化选择的点数,是点之间两两不可达. 要从Dilworth定理说起. Dilworth定理是定义在偏序集上的,也可以从图论的角度解释.偏序集中两个元素能比较大小,则在图 ...

  5. BZOJ1143: [CTSC2008]祭祀river 网络流_Floyd_最大独立集

    Description 在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都 会在水面上举办盛大的祭祀活动.我们可以把Y族居住地水系看成一个由岔口和河道组 ...

  6. [BZOJ1143][CTSC2008]祭祀river(最长反链)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1143 分析: 最长反链==最小路径覆盖==n-二分图最大匹配数 某神犇对二分图的总结: ...

  7. BZOJ1143 [CTSC2008] 祭祀river

    AC通道:http://www.lydsy.com/JudgeOnline/problem.php?id=1143 题目大意: 给你n个点,点与点之间由有向边相连.如果u能到达v的话,那么他们就不能同 ...

  8. 2018.08.20 bzoj1143: [CTSC2008]祭祀river(最长反链)

    传送门 一道简单的求最长反链. 反链简单来说就是一个点集,里面任选两个点u,v都保证从u出发到不了v且v出发到不了u. 链简单来说就是一个点集,里面任选两个点u,v都保证从u出发可以到达v或者v出发可 ...

  9. 【Floyd】【Dilworth定理】【最小路径覆盖】【匈牙利算法】bzoj1143 [CTSC2008]祭祀river

    Dilworth定理,将最长反链转化为最小链覆盖.//貌似还能把最长上升子序列转化为不上升子序列的个数? floyd传递闭包,将可以重叠的最小链覆盖转化成不可重叠的最小路径覆盖.(引用:这样其实就是相 ...

随机推荐

  1. XML使用练习

    #!/usr/bin/env python # -*- coding:utf-8 -*- import requests from xml.etree import ElementTree as ET ...

  2. thinkphp后台向前台传值没有传过去的小问题

    if($listyyarr){ $this->assign('listyyarr',$listyyarr); //$this->assign('nowDated',$endDated); ...

  3. Python内置函数(45)——ascii

    英文文档: ascii(object) As repr(), return a string containing a printable representation of an object, b ...

  4. 英语词汇(2)fall down,fall off和fall over

    一.fall down,fall off和fall over都表示"摔倒.跌倒"的意思,但它们各自的含义不同. 1.fall over 落在...之上, 脸朝下跌倒 fall ov ...

  5. 您的 Java 代码安全吗 — 还是暴露在外? 【转】

    在开发 Java Web 应用程序时,您需要确保应用程序拥有完善的安全性特征补充.这里在谈到 Java 安全性时,我们并不谈及 Java 语言提供的安全性 API,也不涉及使用 Java 代码来保护应 ...

  6. mysql(1)—— 详解一条sql语句的执行过程

    SQL是一套标准,全称结构化查询语言,是用来完成和数据库之间的通信的编程语言,SQL语言是脚本语言,直接运行在数据库上.同时,SQL语句与数据在数据库上的存储方式无关,只是不同的数据库对于同一条SQL ...

  7. 详解k8s零停机滚动发布微服务 - kubernetes

    1.前言 在当下微服务架构盛行的时代,用户希望应用程序时时刻刻都是可用,为了满足不断变化的新业务,需要不断升级更新应用程序,有时可能需要频繁的发布版本.实现"零停机"." ...

  8. 网络配置及shell基础

    一:集群已做完 二:临时配置网络(ip,网关,dns)+永久配置 临时配置网络: ip:    [root@localhost ~]# ifconfig [root@localhost ~]# ifc ...

  9. 点击后退按钮回到本页面中的另一个标签页(tab)

    在使用zepto进行微信网页开发的时候,遇到一个情况,在本页面存在四个TAB栏,每点击一个栏会显示相应的内容,下图这种: 现在有一个需求是,用户点击了后退按钮,需要回到上一次点击的tab栏. 这个需求 ...

  10. 用golang实现常用算法与数据结构——跳跃表(Skip list)

    背景 最近在学习 redis,看到redis中使用 了skip list.在网上搜索了一下发现用 golang 实现的 skip list 寥寥无几,性能和并发性也不是特别好,于是决定自己造一个并发安 ...