Array DP Divide and Conquer

Description:

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array [-2,1,-3,4,-1,2,1,-5,4],

the contiguous subarray [4,-1,2,1] has the largest sum = 6.

这题自己没做出来,对DP算法没有了解过,这次把DP算法简单学习了下,再看这道题就是最基础的对DP的应用(最优化子结构)

Best Solution:

public class Solution {
public int maxSubArray(int[] nums) {
int dp = nums[0];
int max = nums[0]; for (int i = 1; i < nums.length; i++) {
dp = nums[i] + (dp > 0 ? dp : 0);
max = Math.max(max, dp);
} return max;
}
}

显然,题目寻找的是nums[start]nums[end]的和最大,找出这段子数组即可。

在这道题的解法上,在for循环里很明显是个动态的、多阶段决策的思想。dp的确定,是一个递推思想,现在的dp值由上一个dp值所决定,由于是找最大和,故dp<0时,直接舍去dp当前值,并赋值nums[i],这实际上是改变start值。而max的确定,是在当前max和刚得出的dp取大值,相当于确定了end

另一种解法我认为也非常好理解,此处为代码:

public static int maxSubArray(int[] A) {
int maxSoFar=A[0], maxEndingHere=A[0];
for (int i=1;i<A.length;++i){
maxEndingHere= Math.max(maxEndingHere+A[i],A[i]);
maxSoFar=Math.max(maxSoFar, maxEndingHere);
}
return maxSoFar;
}

算法详解原文:

algorithm that operates on arrays: it starts at the left end (element A[1]) and scans through to the right end (element A[n]), keeping track of the maximum sum subvector seen so far. The maximum is initially A[0]. Suppose we've solved the problem for A[1 .. i - 1]; how can we extend that to A[1 .. i]? The maximum

sum in the first I elements is either the maximum sum in the first i - 1 elements (which we'll call MaxSoFar), or it is that of a subvector that ends in position i (which we'll call MaxEndingHere).

MaxEndingHere is either A[i] plus the previous MaxEndingHere, or just A[i], whichever is larger.

笔者翻译如下:

算法作用于数组:从左边(元素A[1])开始,向右边(直到A[n])扫描,找到最大和。最大值初始化为A[0],假设我们现在已经计算到A[1 .. i - 1],怎么扩展到A[1 .. i]呢?前i个元素的最大和应该是前i-1个元素中已算出的最大和(我们称为MaxSoFar),或者是到当前位置i结束算出的新的和(称为MaxEndingHere)。其中,MaxEndingHereA[i]加之前的MaxEndingHereA[i]中较大的那一个。

可以看出两种算法思路一致,MaxEndingHere就相当于是dpMaxSoFar也就是求出的max

LeetCode & Q53-Maximum Subarray-Easy & 动态规划思路分析的更多相关文章

  1. [array] leetcode - 53. Maximum Subarray - Easy

    leetcode - 53. Maximum Subarray - Easy descrition Find the contiguous subarray within an array (cont ...

  2. Leetcode之53. Maximum Subarray Easy

    Leetcode 53 Maximum Subarray Easyhttps://leetcode.com/problems/maximum-subarray/Given an integer arr ...

  3. 小旭讲解 LeetCode 53. Maximum Subarray 动态规划 分治策略

    原题 Given an integer array nums, find the contiguous subarray (containing at least one number) which ...

  4. leetCode 53.Maximum Subarray (子数组的最大和) 解题思路方法

    Maximum Subarray  Find the contiguous subarray within an array (containing at least one number) whic ...

  5. Leetcode#53.Maximum Subarray(最大子序和)

    题目描述 给定一个序列(至少含有 1 个数),从该序列中寻找一个连续的子序列,使得子序列的和最大. 例如,给定序列 [-2,1,-3,4,-1,2,1,-5,4], 连续子序列 [4,-1,2,1] ...

  6. [LeetCode] Minimum Size Subarray Sum 解题思路

    Given an array of n positive integers and a positive integer s, find the minimal length of a subarra ...

  7. 41. leetcode 53. Maximum Subarray

    53. Maximum Subarray Find the contiguous subarray within an array (containing at least one number) w ...

  8. LeetCode 53. Maximum Subarray(最大的子数组)

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  9. LN : leetcode 53 Maximum Subarray

    lc 53 Maximum Subarray 53 Maximum Subarray Find the contiguous subarray within an array (containing ...

  10. leetcode 53. Maximum Subarray 、152. Maximum Product Subarray

    53. Maximum Subarray 之前的值小于0就不加了.dp[i]表示以i结尾当前的最大和,所以需要用一个变量保存最大值. 动态规划的方法: class Solution { public: ...

随机推荐

  1. 【Spring源码分析】AOP源码解析(上篇)

    前言 前面写了六篇文章详细地分析了Spring Bean加载流程,这部分完了之后就要进入一个比较困难的部分了,就是AOP的实现原理分析.为了探究AOP实现原理,首先定义几个类,一个Dao接口: pub ...

  2. highCharts实现简单柱形图

    js: function chart(data,title){ $('#container').highcharts({ chart: { type: 'bar' }, title: { text: ...

  3. ES2015 类中的静态方法

    在ES2015中,终于不用用函数原型来实现类系统,可以直接使用关键字class,下面是对class的静态属性的研究: 举例:一个Node类,每一个Node类之间都可以建立从属关系,每一个Node实例下 ...

  4. weblogic的使用

    1.怎么修改weblogic的端口 创建好域之后,去域的下面找到config.xml文件,在里面加上<listen-port>80</listen-port>即可,访问时不用加 ...

  5. Android KeyCode 列表

    基本按键 KEYCODE_0 按键'0' 7 KEYCODE_1 按键'1' 8 KEYCODE_2 按键'2' 9 KEYCODE_3 按键'3' 10 KEYCODE_4 按键'4' 11 KEY ...

  6. Linux编辑器篇-分享10个最好的Markdown编辑器

    在这篇文章中,兄弟连Linux培训会分享一些可以在 Linux 上安装使用的最好的 Markdown 编辑器.虽然你在 Linux 平台上能找到非常多的 的 Markdown 编辑器,但是在这里我们将 ...

  7. 大数运算的算法设计和C++实现

    1.背景 工作中遇到过需要进行极大数据的存储和运算的场景,当时使用Python解决了这个问题,在Python中,整数没有位数限制,使用起来很方便.但是当程序主体使用C/C++实现时,就比较麻烦.所以考 ...

  8. pip遇见的format问题

    这是pip升级以后的问题. DEPRECATION: The default format will switch to columns in the future. You can use –for ...

  9. Spring MVC核心技术

    目录 异常处理 类型转换器 数据验证 文件上传与下载 拦截器 异常处理 Spring MVC中, 系统的DAO, Service, Controller层出现异常, 均通过throw Exceptio ...

  10. 初始配置JDK

    什么是java? java是一门编程语言  编程语言有很多种 你比如 C语言 等等 为什么学习java呢! 因为你要和计算机交互  当然了你用汉语跟她说她听不懂 所以你要学习编程语言 那么额咱们的ja ...