• 以前接触过libsvm,现在算在实际的应用中学习

  • LIBSVM 使用的一般步骤是:

    • 1)按照LIBSVM软件包所要求的格式准备数据集;
    • 2)对数据进行简单的缩放操作;
    • 3)首要考虑选用RBF 核函数;
    • 4)采用交叉验证选择最佳参数C与g ;
    • 5)采用最佳参数C与g 对整个训练集进行训练获取支持向量机模型;
    • 6)利用获取的模型进行测试与预测。

参数认识

  • LIBSVM使用的数据格式该软件使用的训练数据和检验数据文件格式如下:
[label] [index1]:[value1] [index2]:[value2] ...
[label] [index1]:[value1] [index2]:[value2] ...
  • 考虑选用RBF 核函数,训练数据形成模型(model),实质是算出了wx+b=0中的w,b. Svmtrain的用法:svmtrain [options] training_set_file [model_file];其中options涵义如下:
-s svm类型:设置SVM 类型,默认值为0,可选类型有:
0 -- C- SVC
1 -- nu - SVC
2 -- one-class-SVM
3 -- e - SVR
4 -- nu-SVR -t 核函数类型:设置核函数类型,默认值为2,可选类型有:
0 -- 线性核:u'*v
1 -- 多项式核:(g*u'*v+ coef0)degree
2 -- RBF 核:exp(-||u-v||*||u-v||/g*g)
3 -- sigmoid 核:tanh(g*u'*v+ coef 0) -d degree:核函数中的degree设置,默认值为3;
-g r(gama):核函数中的函数设置(默认1/ k);
-r coef 0:设置核函数中的coef0,默认值为0;
-c cost:设置C- SVC、e - SVR、n - SVR中从惩罚系数C,默认值为1;
-n nu :设置nu - SVC、one-class-SVM 与nu - SVR 中参数nu ,默认值0.5;
-p e :核宽,设置e - SVR的损失函数中的e ,默认值为0.1;
-m cachesize:设置cache内存大小,以MB为单位(默认40):
-e e :设置终止准则中的可容忍偏差,默认值为0.001;
-h shrinking:是否使用启发式,可选值为0 或1,默认值为1;
-b 概率估计:是否计算SVC或SVR的概率估计,可选值0 或1,默认0;
-wi weight:对各类样本的惩罚系数C加权,默认值为1;
-v n:n折交叉验证模式。
  • 其中-g选项中的k是指输入数据中的属性数。操作参数 -v 随机地将数据剖分为n 部分并计算交叉检验准确度和均方根误差。以上这些参数设置可以按照SVM 的类型和核函数所支持的参数进行任意组合,如果设置的参数在函数或SVM 类型中没有也不会产生影响,程序不会接受该参数;如果应有的参数设置不正确,参数将采用默认值。training_set_file是要进行训练的数据集;model_file是训练结束后产生的模型文件,该参数如果不设置将采用默认的文件名,也可以设置成自己惯用的文件名。

  • 举个例子如下:

*
optimization finished, #iter = 162
nu = 0.431029
obj = -100.877288, rho = 0.424462
nSV = 132, nBSV = 107
Total nSV = 132
现简单对屏幕回显信息进行说明:
#iter为迭代次数,
nu 与前面的操作参数-n nu 相同,
obj为SVM文件转换为的二次规划求解得到的最小值,
rho 为判决函数的常数项b,
nSV 为支持向量个数,
nBSV为边界上的支持向量个数,
Total nSV为支持向量总个数。
训练后的模型保存为文件*.model,用记事本打开其内容如下:
svm_type c_svc % 训练所采用的svm类型,此处为C- SVC
kernel_type rbf %训练采用的核函数类型,此处为RBF核
gamma 0.0769231 %设置核函数中的g ,默认值为1/ k
nr_class 2 %分类时的类别数,此处为两分类问题
total_sv 132 %总共的支持向量个数
rho 0.424462 %决策函数中的常数项b
label 1 -1%类别标签
nr_sv 64 68 %各类别标签对应的支持向量个数
SV %以下为支持向量
1 1:0.166667 2:1 3:-0.333333 4:-0.433962 5:-0.383562 6:-1 7:-1 8:0.0687023 9:-1 10:-0.903226 11:-1 12:-1 13:1
0.5104832128985164 1:0.125 2:1 3:0.333333 4:-0.320755 5:-0.406393 6:1 7:1 8:0.0839695 9:1 10:-0.806452 12:-0.333333 13:0.5
1 1:0.333333 2:1 3:-1 4:-0.245283 5:-0.506849 6:-1 7:-1 8:0.129771 9:-1 10:-0.16129 12:0.333333 13:-1
1 1:0.208333 2:1 3:0.333333 4:-0.660377 5:-0.525114 6:-1 7:1 8:0.435115 9:-1 10:-0.193548 12:-0.333333 13:1

采用交叉验证选择最佳参数C与g

  • 通常而言,比较重要的参数是 gamma (-g) 跟 cost (-c) 。而 cross validation (-v)的参数常用5。那么如何去选取最优的参数c和g呢?libsvm 的 python 子目录下面的 grid.py 可以帮助我们。

采用的方法

  • 网格参数寻优函数(分类问题):SVMcgForClass
[bestCVaccuracy,bestc,bestg]=SVMcgForClass(train_label,train,cmin,cmax,gmin,gmax,v,cstep,gstep,accstep)
输入:
train_label:训练集的标签,格式要求与svmtrain相同。
train:训练集,格式要求与svmtrain相同。
cmin,cmax:惩罚参数c的变化范围,即在[2^cmin,2^cmax]范围内寻找最佳的参数c,默认值为cmin=-8,cmax=8,即默认惩罚参数c的范围是[2^(-8),2^8]。
gmin,gmax:RBF核参数g的变化范围,即在[2^gmin,2^gmax]范围内寻找最佳的RBF核参数g,默认值为gmin=-8,gmax=8,即默认RBF核参数g的范围是[2^(-8),2^8]。
v:进行Cross Validation过程中的参数,即对训练集进行v-fold Cross Validation,默认为3,即默认进行3折CV过程。
cstep,gstep:进行参数寻优是c和g的步进大小,即c的取值为2^cmin,2^(cmin+cstep),…,2^cmax,,g的取值为2^gmin,2^(gmin+gstep),…,2^gmax,默认取值为cstep=1,gstep=1。
accstep:最后参数选择结果图中准确率离散化显示的步进间隔大小([0,100]之间的一个数),默认为4.5。
输出:
bestCVaccuracy:最终CV意义下的最佳分类准确率。
bestc:最佳的参数c。
bestg:最佳的参数g。
  • 网格参数寻优函数(回归问题):SVMcgForRegress
[bestCVmse,bestc,bestg]=SVMcgForRegress(train_label,train,cmin,cmax,gmin,gmax,v,cstep,gstep,msestep)其输入输出与SVMcgForClass类似,这里不再赘述。

而当你训练完了model,在用它做classification或regression之前,应该知道model中的内容,以及其含义。
用来训练的是libsvm自带的heart数据
model =
Parameters: [5x1 double]
nr_class: 2
totalSV: 259 % 支持向量的数目
rho: 0.0514 % b
Label: [2x1 double] % classification中标签的个数
ProbA: []
ProbB: []
nSV: [2x1 double] % 每类支持向量的个数
sv_coef: [259x1 double] % 支持向量对应的Wi
SVs: [259x13 double] % 装的是259个支持向量
model.Parameters参数意义从上到下依次为:
-s svm类型:SVM设置类型(默认0)
-t 核函数类型:核函数设置类型(默认2)
-d degree:核函数中的degree设置(针对多项式核函数)(默认3)
-g r(gama):核函数中的gamma函数设置(针对多项式/rbf/sigmoid核函数) (默认类别数目的倒数)
-r coef0:核函数中的coef0设置(针对多项式/sigmoid核函数)((默认0)
function [mse,bestc,bestg] = SVMcgForRegress(train_label,train,cmin,cmax,gmin,gmax,v,cstep,gstep,msestep)
%SVMcg cross validation by faruto %% 若转载请注明:
% faruto and liyang , LIBSVM-farutoUltimateVersion
% a toolbox with implements for support vector machines based on libsvm, 2009.
% Software available at http://www.ilovematlab.cn
%
% Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for
% support vector machines, 2001. Software available at
% http://www.csie.ntu.edu.tw/~cjlin/libsvm %% about the parameters of SVMcg
if nargin < 10
msestep = 0.06;
end
if nargin < 8
cstep = 0.8;
gstep = 0.8;
end
if nargin < 7
v = 5;
end
if nargin < 5
gmax = 8;
gmin = -8;
end
if nargin < 3
cmax = 8;
cmin = -8;
end
%% X:c Y:g cg:acc
[X,Y] = meshgrid(cmin:cstep:cmax,gmin:gstep:gmax);
[m,n] = size(X);
cg = zeros(m,n); eps = 10^(-4); %% record acc with different c & g,and find the bestacc with the smallest c
bestc = 0;
bestg = 0;
mse = Inf;
basenum = 2;
for i = 1:m
for j = 1:n
cmd = ['-v ',num2str(v),' -c ',num2str( basenum^X(i,j) ),' -g ',num2str( basenum^Y(i,j) ),' -s 3 -p 0.1'];
cg(i,j) = svmtrain(train_label, train, cmd); if cg(i,j) < mse
mse = cg(i,j);
bestc = basenum^X(i,j);
bestg = basenum^Y(i,j);
end if abs( cg(i,j)-mse )<=eps && bestc > basenum^X(i,j)
mse = cg(i,j);
bestc = basenum^X(i,j);
bestg = basenum^Y(i,j);
end end
end
%% to draw the acc with different c & g
[cg,ps] = mapminmax(cg,0,1);
figure;
[C,h] = contour(X,Y,cg,0:msestep:0.5);
clabel(C,h,'FontSize',10,'Color','r');
xlabel('log2c','FontSize',12);
ylabel('log2g','FontSize',12);
firstline = 'SVR参数选择结果图(等高线图)[GridSearchMethod]';
secondline = ['Best c=',num2str(bestc),' g=',num2str(bestg), ...
' CVmse=',num2str(mse)];
title({firstline;secondline},'Fontsize',12);
grid on; figure;
meshc(X,Y,cg);
% mesh(X,Y,cg);
% surf(X,Y,cg);
axis([cmin,cmax,gmin,gmax,0,1]);
xlabel('log2c','FontSize',12);
ylabel('log2g','FontSize',12);
zlabel('MSE','FontSize',12);
firstline = 'SVR参数选择结果图(3D视图)[GridSearchMethod]';
secondline = ['Best c=',num2str(bestc),' g=',num2str(bestg), ...
' CVmse=',num2str(mse)];
title({firstline;secondline},'Fontsize',12);
  • 分类问题,简单易用,且有可视化
function [bestacc,bestc,bestg] = SVMcgForClass(train_label,train,cmin,cmax,gmin,gmax,v,cstep,gstep,accstep)
%SVMcg cross validation by faruto %% 若转载请注明:
% faruto and liyang , LIBSVM-farutoUltimateVersion
% a toolbox with implements for support vector machines based on libsvm, 2009.
% Software available at http://www.ilovematlab.cn
%
% Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for
% support vector machines, 2001. Software available at
% http://www.csie.ntu.edu.tw/~cjlin/libsvm %% about the parameters of SVMcg
if nargin < 10
accstep = 4.5;
end
if nargin < 8
cstep = 0.8;
gstep = 0.8;
end
if nargin < 7
v = 5;
end
if nargin < 5
gmax = 8;
gmin = -8;
end
if nargin < 3
cmax = 8;
cmin = -8;
end
%% X:c Y:g cg:CVaccuracy
[X,Y] = meshgrid(cmin:cstep:cmax,gmin:gstep:gmax);
[m,n] = size(X);
cg = zeros(m,n); eps = 10^(-4); %% record acc with different c & g,and find the bestacc with the smallest c
bestc = 1;
bestg = 0.1;
bestacc = 0;
basenum = 2;
for i = 1:m
for j = 1:n
cmd = ['-v ',num2str(v),' -c ',num2str( basenum^X(i,j) ),' -g ',num2str( basenum^Y(i,j) )];
cg(i,j) = svmtrain(train_label, train, cmd); if cg(i,j) <= 55
continue;
end if cg(i,j) > bestacc
bestacc = cg(i,j);
bestc = basenum^X(i,j);
bestg = basenum^Y(i,j);
end if abs( cg(i,j)-bestacc )<=eps && bestc > basenum^X(i,j)
bestacc = cg(i,j);
bestc = basenum^X(i,j);
bestg = basenum^Y(i,j);
end end
end
%% to draw the acc with different c & g
figure;
[C,h] = contour(X,Y,cg,70:accstep:100);
clabel(C,h,'Color','r');
xlabel('log2c','FontSize',12);
ylabel('log2g','FontSize',12);
firstline = 'SVC参数选择结果图(等高线图)[GridSearchMethod]';
secondline = ['Best c=',num2str(bestc),' g=',num2str(bestg), ...
' CVAccuracy=',num2str(bestacc),'%'];
title({firstline;secondline},'Fontsize',12);
grid on; figure;
meshc(X,Y,cg);
% mesh(X,Y,cg);
% surf(X,Y,cg);
axis([cmin,cmax,gmin,gmax,30,100]);
xlabel('log2c','FontSize',12);
ylabel('log2g','FontSize',12);
zlabel('Accuracy(%)','FontSize',12);
firstline = 'SVC参数选择结果图(3D视图)[GridSearchMethod]';
secondline = ['Best c=',num2str(bestc),' g=',num2str(bestg), ...
' CVAccuracy=',num2str(bestacc),'%'];
title({firstline;secondline},'Fontsize',12);

Reference

libsvm参数选择的更多相关文章

  1. libSVM 参数选择

    libSVM 参数选择  [预测标签,准确率,决策值]=svmpredict(测试标签,测试数据,训练的模型);    原文参考:http://blog.csdn.net/carson2005/art ...

  2. libsvm交叉验证与网格搜索(参数选择)

    首先说交叉验证.交叉验证(Cross validation)是一种评估统计分析.机器学习算法对独立于训练数据的数据集的泛化能力(generalize), 能够避免过拟合问题.交叉验证一般要尽量满足:1 ...

  3. libsvm的安装,数据格式,常见错误,grid.py参数选择,c-SVC过程,libsvm参数解释,svm训练数据,libsvm的使用详解,SVM核函数的选择

    直接conda install libsvm安装的不完整,缺几个.py文件. 第一种安装方法: 下载:http://www.csie.ntu.edu.tw/~cjlin/cgi-bin/libsvm. ...

  4. Libliner 中的-s 参数选择:primal 和dual

    Libliner 中的-s 参数选择:primal 和dual LIBLINEAR的优化算法主要分为两大类,即求解原问题(primal problem)和对偶问题(dual problem).求解原问 ...

  5. 支持向量机SVM 参数选择

    http://ju.outofmemory.cn/entry/119152 http://www.cnblogs.com/zhizhan/p/4412343.html 支持向量机SVM是从线性可分情况 ...

  6. paper 127:机器学习中的范数规则化之(二)核范数与规则项参数选择

    机器学习中的范数规则化之(二)核范数与规则项参数选择 zouxy09@qq.com http://blog.csdn.net/zouxy09 上一篇博文,我们聊到了L0,L1和L2范数,这篇我们絮叨絮 ...

  7. adaboost 参数选择

    先看下ababoost和决策树效果对比 import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection ...

  8. 支持向量机(SVM)利用网格搜索和交叉验证进行参数选择

    上一回有个读者问我:回归模型与分类模型的区别在哪?有什么不同,我在这里给他回答一下 : : : : 回归问题通常是用来预测一个值,如预测房价.未来的天气情况等等,例如一个产品的实际价格为500元,通过 ...

  9. 机器学习中的范数规则化 L0、L1与L2范数 核范数与规则项参数选择

    http://blog.csdn.net/zouxy09/article/details/24971995 机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http: ...

随机推荐

  1. JS调用WebService,发布到IIS,网页提示WebService未定义[已解决]

    VS2013中,JS调用WebService,一直运行正常.部署到WindowsServer2008之后,在网页中访问,始终提示网页中有错误,点开之后发现是WebService未定义. 于是上网查解决 ...

  2. poptest分享计划以及提供的服务

    poptest分享计划以及提供的服务 POPTEST致力于测试开发工程师的培养,能让学员经过系统培训后从事自动化测试工作,包括功能自动化.性能自动化.接口自动化以及移动端系统的自动化测试等,由于移动端 ...

  3. 每天学点python-入门

    最近就像学点脚本语言,大家都推荐python,准备每天学点python吧~ 1. python的执行过程 1)先将脚本编译成字节码 2)python虚拟机解释并运行字节码文件 2. python在赋值 ...

  4. 一个GOOD的Idea需要伯乐发觉-致敬错过的IDEA

    类似一个微信电话本

  5. Mybatis基础学习(四)—关系映射

    一.模型分析 user和orders user---->orders 一个用户可以创建多个订单,一对多. orders--->user 一个订单只由一个用户创建,一对一.   orders ...

  6. python select epoll poll的解析

    select.poll.epoll三者的区别 select select最早于1983年出现在4.2BSD中,它通过一个select()系统调用来监视多个文件描述符的数组(在linux中一切事物皆文件 ...

  7. ios url网址相关问题解说

    问题1:ios网址中存在汉字的情况,需要GB_18030_2000编码方法如下: // 汉字转编码 + (NSString *)changeChineseWithEncodingGB_18030_20 ...

  8. 怎么看iOS human interface guidelines中的user control原则

    最近离开了老东家,整理整理思路,因为一直做的是微信公众号相关的产品对app的东西有一段时间没有做过了,所以又看了一遍iOS human interface guidelines,看到user cont ...

  9. iOS获取设备型号和App版本号等信息(OC+Swift)

    iOS获取设备型号和App版本号等信息(OC+Swift) 字数1687 阅读382 评论3 喜欢10 好久没有写过博客了,因为中间工作比较忙,然后有些个人事情所以耽误了.但是之前写的博客还一直有人来 ...

  10. 短路运算|字符串操作函数|内存mem操作函数

    body, table{font-family: 微软雅黑; font-size: 10pt} table{border-collapse: collapse; border: solid gray; ...