1002: [FJOI2007]轮状病毒

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 5577  Solved: 3031
[Submit][Status][Discuss]

Description

  轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的。一个N轮状基由圆环上N个不同的基原子
和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道。如下图所示

  N轮状病毒的产生规律是在一个N轮状基中删去若干条边,使得各原子之间有唯一的信息通道,例如共有16个不
同的3轮状病毒,如下图所示

  现给定n(N<=100),编程计算有多少个不同的n轮状病毒

Input

  第一行有1个正整数n

Output

  计算出的不同的n轮状病毒数输出

Sample Input

3

Sample Output

16

HINT

Source

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1002

关于基尔霍夫矩阵:

*算法引入:

*给定一个无向图G,求它生成树的个数t(G);


*


*算法思想:


*(1)G的度数矩阵D[G]是一个n*n的矩阵,并且满足:当i≠j时,dij=0;当i=j时,dij等于vi的度数;


*(2)G的邻接矩阵A[G]是一个n*n的矩阵,并且满足:如果vi,vj之间有边直接相连,则aij=1,否则为0;


*定义图G的Kirchhoff矩阵C[G]为C[G]=D[G]-A[G];


*Matrix-Tree定理:G的所有不同的生成树的个数等于其Kirchhoff矩阵C[G]任何一个n-1阶主子式的行列式的绝对值;


*所谓n-1阶主子式,就是对于r(1≤r≤n),将C[G]的第r行,第r列同时去掉后得到的新矩阵,用Cr[G]表示;

此题推出f[i]=(f[i-1]*3-f[i-2]+2)

下面给出AC代码:

 #include <bits/stdc++.h>
using namespace std;
typedef long long ll;
inline int read()
{
int x=,f=;
char ch=getchar();
while(ch<''||ch>'')
{
if(ch=='-')
f=-;
ch=getchar();
}
while(ch>=''&&ch<='')
{
x=x*+ch-'';
ch=getchar();
}
return x*f;
}
inline void write(int x)
{
if(x<)
{
putchar('-');
x=-x;
}
if(x>)
{
write(x/);
}
putchar(x%+'');
}
struct data
{
int a[],len;
};
int n;
data mul(data a,int k)
{
for(int i=;i<=a.len;i++)
a.a[i]*=k;
for(int i=;i<=a.len;i++)
{
a.a[i+]+=a.a[i]/;
a.a[i]%=;
}
if(a.a[a.len+]!=)
a.len++;
return a;
}
data sub(data a,data b)
{
a.a[]+=;
int j=;
while(a.a[j]>=)
{
a.a[j]%=;
a.a[j+]++;
j++;
}
for(int i=;i<=a.len;i++)
{
a.a[i]-=b.a[i];
if(a.a[i]<)
{
a.a[i]+=;
a.a[i+]--;
}
}
while(a.a[a.len]==)
a.len--;
return a;
}
int main()
{
data f[];f[].a[]=;f[].a[]=;
f[].len=f[].len=;
n=read();
for(int i=;i<=n;i++)
f[i]=sub(mul(f[i-],),f[i-]);
for(int i=f[n].len;i>;i--)
write(f[n].a[i]);
return ;
}

BZOJ 1002: [FJOI2007]轮状病毒【生成树的计数与基尔霍夫矩阵简单讲解+高精度】的更多相关文章

  1. 【BZOJ】1002:轮状病毒(基尔霍夫矩阵【附公式推导】或打表)

    Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图 ...

  2. BZOJ 1002 [FJOI2007]轮状病毒

    1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3106  Solved: 1724[Submit][Statu ...

  3. bzoj 1002 [FJOI2007]轮状病毒 高精度&&找规律&&基尔霍夫矩阵

    1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2234  Solved: 1227[Submit][Statu ...

  4. 【刷题】BZOJ 1002 [FJOI2007]轮状病毒

    Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子 和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下 ...

  5. bzoj1002: [FJOI2007]轮状病毒(基尔霍夫矩阵)

    1002: [FJOI2007]轮状病毒 题目:传送门 题解: 决定开始板刷的第一题... 看到这题的时候想:这不就是求有多少种最小生成树的方式吗? 不会啊!!!%题解... 什么鬼?基尔霍夫矩阵?? ...

  6. BZOJ1002 FJOI2007 轮状病毒 【基尔霍夫矩阵+高精度】

    BZOJ1002 FJOI2007 轮状病毒 Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原 ...

  7. [bzoj1002] [FJOI2007]轮状病毒轮状病毒(基尔霍夫矩阵)

    Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子 和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下 ...

  8. 疯子的算法总结(九) 图论中的矩阵应用 Part 2 矩阵树 基尔霍夫矩阵定理 生成树计数 Matrix-Tree

    定理: 1.设G为无向图,设矩阵D为图G的度矩阵,设C为图G的邻接矩阵. 2.对于矩阵D,D[i][j]当 i!=j 时,是一条边,对于一条边而言无度可言为0,当i==j时表示一点,代表点i的度. 即 ...

  9. BZOJ 4031 HEOI2015 小Z的房间 基尔霍夫矩阵+行列式+高斯消元 (附带行列式小结)

    原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4031 Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可 ...

随机推荐

  1. 虚拟表dual。字符串函数UPPER,LOWER。&变量。INITCAP,LENGTH,SUBSTR

    &自定义变量的用法:

  2. sourceTree git 忽略指定文件

    按照如下步骤执行(终端命令) 1. git status modified: LovegoMall.xcworkspace/xcuserdata/Tiny.xcuserdatad/xcdebugger ...

  3. VR\AR 使用 SceneKit

    VR\AR 使用 SceneKit http://www.jianshu.com/c/70d63e3941fd

  4. 小白的Python之路 day4 装饰器高潮

    首先装饰器实现的条件: 高阶函数+嵌套函数 =>装饰器 1.首先,我们先定义一个高级函数,去装饰test1函数,得不到我们想要的操作方式 import time #定义高阶函数 def deco ...

  5. C:数据结构与算法之单链表

    单链表相对于顺序表比较难理解,但是比较实用,单链表的插入,删除不需要移动数据元素,只需要一个指针来寻找所需要的元素,还有一个大优点就是不浪费空间,当你想要增加一个结点可以申请(malloc())一个结 ...

  6. coursera 视频总是缓冲或者无法观看的解决办法

    注意!!!该方法针对Windows用户,亲测有效. 1.用管理员权限记事本打开host文件 2.将如下内容复制到文件末尾 52.84.246.90 d3c33hcgiwev3.cloudfront.n ...

  7. Xamarin Android自定义文本框

    xamarin android 自定义文本框简单的用法 关键点在于,监听EditText的内容变化,不同于java中文本内容变化去调用EditText.addTextChangedListener(m ...

  8. bzoj 1801: [Ahoi2009]chess 中国象棋

    Description 在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮. 请问有多少种放置方法,中国像棋中炮的行走方式大家应该很清楚吧. Input 一行包含两个整数N, ...

  9. 一道叉姐的AC自动机鬼题

    题面描述丢失了... 给n个串模板串,然后再给你m个串,对于这m个串的每个串,问在[L,R]的模板串中,在多少个串中出现过; 这题的正解是对于后m个串建AC自动机,然后离线,在fail树上树链求并. ...

  10. 【WebGL】《WebGL编程指南》读书笔记——第6章

    一.前言        最近重感冒发烧,妈蛋好难受,请假了3天,驾校也没去,简直僵硬!今天继续WebGL的学习. 二.正文        A. GLSL支持两种数据值类型: 整数型(int)与浮点型( ...