第六届蓝桥杯软件类省赛题解C++/Java

1[C++]、统计不含4的数字
统计10000至99999中,不包含4的数值个数。
答:暴力循环范围内所有数字判断一下就是了,答案是52488

1[Java]、三角形面积
图中的所有小方格面积都是1。 那么,图中的三角形面积应该是多少呢?
答:小学生题目吧,算一下就行了,略。

2[C++]、计算1千天后的日期
2014-11-09再过1000天是哪一日?
答:用Excel算,用代码注意一下细节,答案2017-08-05。

2[Java]、立方变自身
观察下面的现象,某个数字的立方,按位累加仍然等于自身。
1^3 = 1
8^3  = 512    5+1+2=8
17^3 = 4913   4+9+1+3=17 ...
请你计算包括1,8,17在内,符合这个性质的正整数一共有多少个?
答:这种题不要想多了,估计一下(其实都不用估计),假设这个数有3位数,那么它的立方的范围100^3~999^3为:[1000000,997002999],这个范围内的数的各位和一定<81,因为就算每一位都是9,9位数最多81,怎么也不在[100,999]这个范围,同理,假设这个数有4位数,更不可能了。所以暴力测试一下1到100之间的数即可,最后满足条件的数有:1 8 17 18 26 27,共6个数

3、三羊献瑞
观察下面的加法算式:
祥 瑞 生 辉
+   三 羊 献 瑞
-------------------
三 羊 生 瑞 气
其中,相同的汉字代表相同的数字,不同的汉字代表不同的数字。
请你填写“三羊献瑞”所代表的4位数字(答案唯一),不要填写任何多余内容。
答:暴力测试一下所有可能的数就行了,答案好像是1085,代码实在太长,百度了一个:点这里。如果使用C++的next_permutation函数代码会变短很多。

4[C++]、古怪的星号修饰符
这是道代码填空题,主要是完成一个字符串s,按宽度width截断后,在固定宽度为width,两边为符号’|’的居中输出。
难点是题目给出了printf(“%*s%s%*s”,___),要求填printf的实参列表。
答:题目找不到了,比如:printf(“%*s”, 6, “abc”) 就是把"abc"放到在域宽为6的空间中右对齐,*控制宽度。

4[Java]、循环节长度
两个整数做除法,有时会产生循环小数,其循环部分称为:循环节。 比如,11/13=6=>0.846153846153.....  其循环节为[846153] 共有6位。 下面的方法,可以求出循环节的长度。
请仔细阅读代码,并填写划线部分缺少的代码。

 
1
2
3
4
5
6
7
8
9
10
11
public static int f(int n, int m){
   n = n % m;
      Vector v = new Vector();
      for(;;){
          v.add(n);
          n *= 10;
          n = n % m;
          if(n==0) return 0;
          if(v.indexOf(n)>=0) _______//填空   
      }
}

答:看懂代码什么意思就很简单了。
if(n==0) return 0; 表示最后整除了,无循环节,当然这不是重点;
if(v.indexOf(n)>=0) 表示这次除法的余数以前出现过,所以出现了循环节,答案为return v.size()-v.indexOf(n),注意没有加1,因为v.indexOf是从0开始的。

5、九数组分数
1,2,3...9 这九个数字组成一个分数,其值恰好为1/3,如何组法?
下面的程序实现了该功能,请填写划线部分缺失的代码。

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
public class A{  
    public static void test(int[] x){
        int a = x[0]*1000 + x[1]*100 + x[2]*10 + x[3];
        int b = x[4]*10000 + x[5]*1000 + x[6]*100 + x[7]*10 + x[8];
        if(a*3==b) System.out.println(a + " " + b);  
    }
    public static void f(int[] x, int k){
        if(k>=x.length){
        test(x);
            return;
   }
   for(int i=k; i<x.length; i++){
        {int t=x[k]; x[k]=x[i]; x[i]=t;}
        f(x,k+1);
        ______________// 填空
    }
    public static void main(String[] args){
       int[] x = {1,2,3,4,5,6,7,8,9};
        f(x,0);
    }
}

答:Tips:这种递归代码一般都具有“对称性”,就像搜索的时候先标记再取消标记一样,所以答案为:{int t=x[k]; x[k]=x[i]; x[i]=t;}

6、加法变乘法
我们都知道:1+2+3+ ... + 49 = 1225
现在要求你把其中两个不相邻的加号变成乘号,使得结果为2015
比如:
1+2+3+...+10*11+12+...+27*28+29+...+49 = 2015
答:题目要求你把其中两个不相邻的加号变成乘号,所以枚举一下乘号的位置,然后检验是否满足条件。
输出10和16,样例就是10,所以答案为16

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public class Main {
        public static boolean test(int i, int j) {
         int m = i * (i + 1) + j * (j + 1);
         int s = (49 + 1) * 49 / 2 - (2 * i + 1) - (2 * j + 1);
         return m + s == 2015;
        }
        public static void main(String[] args) {
         // 假设数字i后面的符号位第i个符号
         for (int i = 1; i <= 46; i ++) {
         for (int j = i + 2; j <= 48; j ++) {
         if (test(i, j)) {
         System.out.println(i);
         }
         }
         }
        }
}

7、牌型种数
小明被劫持到X赌城,被迫与其他3人玩牌。 一副扑克牌(去掉大小王牌,共52张),均匀发给4个人,每个人13张。 这时,小明脑子里突然冒出一个问题:
如果不考虑花色,只考虑点数,也不考虑自己得到的牌的先后顺序,自己手里能拿到的初始牌型组合一共有多少种呢?
答:题意:4个A 4个2..4个K共52张牌,取13张的方法数是多少?(我记得我当时题意都理解错了)
高中的排列组合吧,应该有数学方法可以直接算出来,如果不会(我也不会),看下面:
方法1:直接暴力搜索,对于每种牌,有5种可能,要么取1张,要么取2张..要么取4张,要么不取,中间也可以加一些剪枝,应该能跑出来吧...吧...
方法2:动态规划,dp[i][j]表示取到第i(1~13)种牌的时候已经有了j张牌的方法数
答案是:3598180

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#include <iostream>
#include <cstdio>
using namespace std;
#define ll long long
#define N 13
 
ll dp[N + 1][N + 1]; //取第i种牌时候已经有j张牌的方法数
 
int main()
{
    dp[0][0]  = 1;
    for(int i = 1; i <= N; i ++) {
        for(int j = 0; j <= N; j ++) {
            if(j > 4 * i) break; //根本没那么多牌取
            if(j >= 1) dp[i][j] += dp[i - 1][j - 1]; //第i种牌取1张
            if(j >= 2) dp[i][j] += dp[i - 1][j - 2]; //第i种牌取2张
            if(j >= 3) dp[i][j] += dp[i - 1][j - 3]; //第i种牌取3张
            if(j >= 4) dp[i][j] += dp[i - 1][j - 4]; //第i种牌取4张
            dp[i][j] += dp[i-1][j]; //第i种牌取0张
        }
    }
    printf("%lld\n", dp[N][N]);
    return 0;
}

8[C++]、计算房子间曼哈顿距离
房子按S形摆放,如
1 2 3
6 5 4
7 8 …
现输入每行的宽度w,计算出任意两个房子m、n的曼哈顿距离(横向距离+竖向距离)。
答:很简单吧,不知道咋说

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#include <iostream>
#include <cmath>
using namespace std;
 
void GetPos(int w, int n, int& x, int& y) {
    x = (n - 1) / w + 1;
    y = n % w;
 
    if (y == 0) y = w;
    if (x % 2 == 0) {
        y = w - y + 1;
    }
}
int main()
{
    int w, m, n;
    int x1, y1, x2, y2;
    cin >> w >> m >> n;
    GetPos(w, m, x1, y1);
    GetPos(w, n, x2, y2);
    cout << abs(x1 - x2) + abs(y1 - y2) << endl;
    return 0;
}

8[Java]、饮料换购
乐羊羊饮料厂正在举办一次促销优惠活动。乐羊羊C型饮料,凭3个瓶盖可以再换一瓶C型饮料,并且可以一直循环下去,但不允许赊账。
请你计算一下,如果小明不浪费瓶盖,尽量地参加活动,那么,对于他初始买入的n瓶饮料,最后他一共能得到多少瓶饮料。
输入:一个整数n,表示开始购买的饮料数量(0<n<10000)
输出:一个整数,表示实际得到的饮料数
答:模拟一下就行了吧应该,代码:

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#include <iostream>
#include <cstdio>
using namespace std;
 
int main()
{
    int n;
    scanf("%d", &n);
    int h = n, g = n; //h表示喝了的数量,g表示当前瓶盖数量
    while(g >= 3) {
        h += g / 3;
        g = g/3 + g % 3;
    }
    printf("%d\n", h);
    return 0;
}

9、垒骰子
赌圣atm晚年迷恋上了垒骰子,就是把骰子一个垒在另一个上边,不能歪歪扭扭,要垒成方柱体。
经过长期观察,atm 发现了稳定骰子的奥秘:有些数字的面贴着会互相排斥! 我们先来规范一下骰子:1 的对面是 4,2 的对面是 5,3 的对面是 6。
假设有 m 组互斥现象,每组中的那两个数字的面紧贴在一起,骰子就不能稳定的垒起来。 atm想计算一下有多少种不同的可能的垒骰子方式。
两种垒骰子方式相同,当且仅当这两种方式中对应高度的骰子的对应数字的朝向都相同。 由于方案数可能过多,请输出模 10^9 + 7 的结果。
对于 30% 的数据:n <= 5
对于 60% 的数据:n <= 100
对于 100% 的数据:0 < n <= 10^9, m <= 36
答:矩阵快速幂,忘完了,代码仅供参考。
矩阵数组a[i][j]表示n个骰子堆起来,第一层顶面为i,第n层顶面为j的方案数(现在不考虑旋转)
初始化转换矩阵数组的时候注意:比如1和2不能挨着,要转换成1和5,因为2的对面是5
然后求得数组的n-1方,将所得矩阵每个数相加得到答案。
由于4个面可以旋转,所以将上面的答案乘以4^n。

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
#define ll long long
#define MOD 1000000007
#define N 6
 
struct Matric {
    int sz;
    int a[N][N];
    Matric(int s, int k = 0) {
        sz = s;
        for(int i = 0; i < sz; i ++) {
            for(int j = 0; j < sz; j ++) {
                a[i][j] = k;
            }
        }
    }
    Matric operator * (const Matric &t) {
        Matric res = Matric(sz);
        for(int i = 0; i < sz; i ++) {
            for(int k = 0; k < sz; k ++) {
                if(a[i][k])
                    for(int j = 0; j < sz; j ++) {
                        res.a[i][j] += (ll)a[i][k] * t.a[k][j] % MOD;
                    }
            }
        }
        return res;
    }
    Matric operator ^ (int n) {
        Matric ans = Matric(sz);
        Matric tmp = *(this);
        for(int i = 0; i < sz; i ++) ans.a[i][i] = 1;
        while(n) {
            if(n & 1) ans = ans * tmp;
            tmp = tmp * tmp;
            n >>= 1;
        }
        return ans;
    }
    int sum() {
        int sum = 0;
        for(int i = 0; i < sz; i ++) {
            for(int j = 0; j < sz; j ++) {
                sum = (sum + a[i][j]) % MOD;
            }
        }
        return sum;
    }
};
 
int pow(int a, int b)
{
    int ans = 1;
    while(b) {
        ans = ans * a % MOD;
        if(b & 1) a = a * a % MOD;
        b>>=1;
    }
    return ans;
}
int main()
{
    int n, m;
    scanf("%d%d", &n, &m);
    Matric a = Matric(6, 1);
    while(m--) {
        int u, v;
        scanf("%d%d", &u, &v);
        a.a[u - 1][(v + 2) % N] = 0;
        a.a[v - 1][(u + 2) % N] = 0;
    }
    a = a ^ (n - 1);
    int ans1 = a.sum();
    int ans2 = pow(4, n);
    int ans = (ll)ans1 * ans2 % MOD;
    printf("%d\n", ans);
    return 0;
}

10、生命之树
在X森林里,上帝创建了生命之树。
他给每棵树的每个节点(叶子也称为一个节点)上,都标了一个整数,代表这个点的和谐值。 上帝要在这棵树内选出一个非空节点集S,使得对于S中的任意两个点a,b,都存在一个点列 {a, v1, v2, ..., vk, b} 使得这个点列中的每个点都是S里面的元素,且序列中相邻两个点间有一条边相连。
在这个前提下,上帝要使得S中的点所对应的整数的和尽量大。 这个最大的和就是上帝给生命之树的评分。
经过atm的努力,他已经知道了上帝给每棵树上每个节点上的整数。但是由于 atm 不擅长计算,他不知道怎样有效的求评分。他需要你为他写一个程序来计算一棵树的分数。
第一行一个整数 n 表示这棵树有 n 个节点。 第二行 n 个整数,依次表示每个节点的评分。
接下来 n-1 行,每行 2 个整数 u, v,表示存在一条 u 到 v 的边。由于这是一棵树,所以是不存在环的。
输出一行一个数,表示上帝给这棵树的分数。
答:题目有点绕啊,就是找一个点集,集合内两两可达,使得集合的和谐值最大。
树形DP:
dp[u][0]表示以u为根(不中u点)的子树的最大和谐值
dp[v][1]表示以u为根(选中u点)的子树的最大和谐值
状态转移方程:dp[u][0]=max(dp[v][0],dp[v][1]); //v为u的子节点
dp[u][1]+=max(dp[v][1],0) //a[u]为u点的和谐值

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
#define INF 0x3f3f3f3f
#define N 100010
 
struct  Edge{
    int to,next;
}edge[N<<1];
 
int tot;
int head[N];
 
int n;
int a[N];
int dp[N][2];
 
void init()
{
    tot=0;
    memset(head,-1,sizeof(head));
}
void add(int u,int v)
{
    edge[tot].to=v;
    edge[tot].next=head[u];
    head[u]=tot++;
}
void dfs(int u,int pre)
{
    dp[u][0]=0;
    dp[u][1]=a[u];
    for(int i=head[u];i!=-1;i=edge[i].next){
        int v=edge[i].to;
        if(v!=pre){
            dfs(v,u);
            dp[u][0]=max(dp[u][0],max(dp[v][0],dp[v][1]));
            dp[u][1]+=max(0,dp[v][1]);
        }
    }
}
int main()
{
    int mx=-INF;
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
        scanf("%d",&a[i]);
        mx=max(a[i],mx);
    }
    init();
    for(int i=1;i<n;i++){
        int u,v;
        scanf("%d%d",&u,&v);
        add(u,v);
        add(v,u);
    }
    if(mx<=0){
        printf("%d\n", mx);
        return 0;
    }
    dfs(1,1);
    printf("%d\n",max(dp[1][0],dp[1][1]));
    return 0;
}

第六届蓝桥杯软件类省赛题解C++/Java的更多相关文章

  1. 算法笔记_214:第六届蓝桥杯软件类校赛真题(Java语言A组)

    目录 1 题目一 2 题目二 3 题目三 4 题目四 5 题目五 6 题目六 7 题目七 前言:以下代码仅供参考,若有错误欢迎指正哦~ 1 题目一 一个串的子串是指该串的一个连续的局部.如果不要求连续 ...

  2. 算法笔记_216:第六届蓝桥杯软件类校赛部分真题(Java语言C组)

    目录 1 题目一 2 题目二 3 题目三 4 题目四 5 题目五 前言:以下代码仅供参考,若有错误欢迎指正哦~ 1 题目一 二项式的系数规律,我国数学家很早就发现了. 如[图1.png],我国南宋数学 ...

  3. 算法笔记_215:第六届蓝桥杯软件类校赛部分真题(Java语言B组)

    目录 1 题目一 2 题目二 3 题目三 前言:以下代码仅供参考,若有错误欢迎指正哦~ 1 题目一 java中提供了对正则表达式的支持. 有的时候,恰当地使用正则,可以让我们的工作事半功倍! 如下代码 ...

  4. 算法笔记_208:第六届蓝桥杯软件类决赛真题(Java语言A组)

    目录 1 胡同门牌号 2 四阶幻方 3 显示二叉树 4 穿越雷区 5 切开字符串 6 铺瓷砖   前言:以下代码仅供参考,若有错误欢迎指正哦~ 1 胡同门牌号 标题:胡同门牌号 小明家住在一条胡同里. ...

  5. 算法笔记_212:第七届蓝桥杯软件类决赛真题(Java语言B组)

    目录 1 愤怒小鸟 2 反幻方 3 打靶 4 路径之谜 5 碱基 6 圆圈舞 前言:以下代码仅供参考,若有错误欢迎指正哦~ 1 愤怒小鸟 愤怒小鸟 X星球愤怒的小鸟喜欢撞火车! 一根平直的铁轨上两火车 ...

  6. 算法笔记_108:第四届蓝桥杯软件类省赛真题(JAVA软件开发本科A组)试题解答

     目录 1 世纪末的星期 2 振兴中华 3 梅森素数 4 颠倒的价牌 5 三部排序 6 逆波兰表达式 7 错误票据 8 带分数 9 剪格子 10 大臣的旅费 前言:以下试题解答代码部分仅供参考,若有不 ...

  7. 算法笔记_210:第六届蓝桥杯软件类决赛真题(Java语言C组)

    目录 1 机器人数目 2 生成回文数 3 空心菱形 4 奇怪的数列 5 密文搜索 6 居民集会 前言:以下代码仅供参考,若有错误欢迎指正哦~ 1 机器人数目 标题:机器人数目 少年宫新近邮购了小机器人 ...

  8. 算法笔记_209:第六届蓝桥杯软件类决赛部分真题(Java语言B组)

    目录 1 分机号 2 五星填数 3 表格计算 前言:以下代码仅供参考,若有错误欢迎指正哦~ 1 分机号 标题:分机号 X老板脾气古怪,他们公司的电话分机号都是3位数,老板规定,所有号码必须是降序排列, ...

  9. 算法笔记_211:第七届蓝桥杯软件类决赛部分真题(Java语言A组)

    目录 1 阶乘位数 2 凑平方数 3 棋子换位 4 机器人塔 前言:以下代码仅供参考,若有错误欢迎指正哦~ 1 阶乘位数 阶乘位数 9的阶乘等于:362880 它的二进制表示为:10110001001 ...

随机推荐

  1. Fork/Join-Java并行计算框架

    Java在JDK7之后加入了并行计算的框架Fork/Join,可以解决我们系统中大数据计算的性能问题.Fork/Join采用的是分治法,Fork是将一个大任务拆分成若干个子任务,子任务分别去计算,而J ...

  2. LINUX 笔记-文件名的匹配

    特殊的匹配符号: * 匹配文件名中的任何字符串,包括空字符串 ? 匹配文件名中的任何单个字符串 [...] 匹配[]中包含的任何字符 [!...] 匹配[]中非感吧号!之后的字符

  3. python参考手册一书笔记之第一篇上

    在python2和python3的版本差异很大输出hello world的方法在2里支持在3里就不支持了. print 'hello world' #在2中支持 print ('hello world ...

  4. 将一个实体转换成 Url 参数的形式 ?a=a&b=b

    function toQueryString(obj) { var ret = []; for (var key in obj) { key = encodeURIComponent(key); va ...

  5. jquery中常用的方法和注意点

    1.通过js获取url中的参数值 //通过参数名称name获取url参数function GetQueryString(name) { var reg = new RegExp("(^|&a ...

  6. angular内置provider之$compileProvider

    一.方法概览 directive(name, directiveFactory) component(name, options) aHrefSanitizationWhitelist([regexp ...

  7. SE6 模板字符串详解

    SE6引入了模板字符串这样一个概念,让我们从无止尽的+连接字符串中解脱了出来,SE5中也可以在字符串末尾添加\实现,不过模板字符串更加好用和强大. SE6模板字符串是用反撇号(`,即键盘上和~键同一个 ...

  8. linux学习(九)set_uid、set_gid、stick_bit、软链接、硬链接

    一.set_uid set_uid其实是一种特殊权限,我们看一个文件: [root@iZ25lzba47vZ ~]# ls -l /usr/bin/passwd -rwsr-xr-x. root ro ...

  9. hdu 3001 Travelling(状态压缩 三进制)

    Travelling Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  10. Codeforces Round #383 (Div. 2)C. Arpa's loud Owf and Mehrdad's evil plan

    C. Arpa's loud Owf and Mehrdad's evil plan time limit per test 1 second memory limit per test 256 me ...