Description

Bob有一棵n个点的有根树,其中1号点是根节点。Bob在每个点上涂了颜色,并且每个点上的颜色不同。定义一条路
径的权值是:这条路径上的点(包括起点和终点)共有多少种不同的颜色。Bob可能会进行这几种操作:
1 x:
把点x到根节点的路径上所有的点染上一种没有用过的新颜色。
2 x y:
求x到y的路径的权值。
3 x y:
在以x为根的子树中选择一个点,使得这个点到根节点的路径权值最大,求最大权值。
Bob一共会进行m次操作

Input

第一行两个数n,m。
接下来n-1行,每行两个数a,b,表示a与b之间有一条边。
接下来m行,表示操作,格式见题目描述
1<=n,m<=100000 

Output

每当出现2,3操作,输出一行。
如果是2操作,输出一个数表示路径的权值
如果是3操作,输出一个数表示权值的最大值

Sample Input

5 6
1 2
2 3
3 4
3 5
2 4 5
3 3
1 4
2 4 5
1 5
2 4 5

Sample Output

3
4
2
2

HINT

Source

鸣谢infinityedge上传

这个题真的是醉得不行。。。

考虑到第一个操作很烦,但是我们可以用LCT的access来解决这一操作。。。

我们把这个点access的时候,把当前点的原来的重儿子所在的子树权值+1,把新接上来的重儿子的子树的权值-1。。。

(这个直接用线段树来实现。。。)

考虑到每次是染上一个未出现的颜色,可以画一下图来思考这样做的正确性:

只有原来的重儿子的子树的val值要改变(+1),其余儿子的val值是不变(只是换了一种别的颜色而已,总数不变)。。。

而新接上的重儿子的子树内因为少了当前点的颜色而需要-1(原来当前点和新重儿子是不同色的。。。)

注意这些修改都是找到深度最小的点的子树来修改。。。

然后对于第二个操作的查询,就是 查询val[u]+val[v]-2*val[lca(u,v)]+1。。。(因为u,v的颜色不相同,分lca的颜色讨论一下)

// MADE BY QT666
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<iostream>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=300050;
int n,m;
struct tree{
int head[N],to[N],cnt,nxt[N],size[N],son[N],fa[N],top[N],dfn[N],ed[N],tt,deep[N];
void lnk(int x,int y){
to[++cnt]=y,nxt[cnt]=head[x],head[x]=cnt;
to[++cnt]=x,nxt[cnt]=head[y],head[y]=cnt;
}
void dfs1(int x,int f){
size[x]=1;deep[x]=deep[f]+1;
for(int i=head[x];i;i=nxt[i]){
int y=to[i];
if(y!=f){
fa[y]=x;dfs1(y,x);
size[x]+=size[y];
if(size[y]>size[son[x]]) son[x]=y;
}
}
}
void dfs2(int x,int ff){
top[x]=ff;dfn[x]=++tt;
if(son[x]) dfs2(son[x],ff);
for(int i=head[x];i;i=nxt[i]){
int y=to[i];
if(y!=son[x]&&y!=fa[x]) dfs2(y,y);
}
ed[x]=tt;
}
int lca(int x,int y){
while(top[x]!=top[y]){
if(deep[top[x]]<deep[top[y]]) swap(x,y);
x=fa[top[x]];
}
if(deep[x]<deep[y]) swap(x,y);
return y;
}
}Tree;
struct segment_tree{
int rt,Max[N],lazy[N],sz,ls[N],rs[N];
void insert(int &x,int l,int r,int v,int d){
if(!x) x=++sz;
if(l==r){Max[x]=d;return;}
int mid=(l+r)>>1;
if(v<=mid) insert(ls[x],l,mid,v,d);
else insert(rs[x],mid+1,r,v,d);
Max[x]=max(Max[ls[x]],Max[rs[x]]);
}
void update(int x,int l,int r,int xl,int xr,int tag){
if(xl<=l&&r<=xr){
Max[x]+=tag;lazy[x]+=tag;return;
}
int mid=(l+r)>>1;
if(xr<=mid) update(ls[x],l,mid,xl,xr,tag);
else if(xl>mid) update(rs[x],mid+1,r,xl,xr,tag);
else update(ls[x],l,mid,xl,mid,tag),update(rs[x],mid+1,r,mid+1,xr,tag);
Max[x]=max(Max[ls[x]],Max[rs[x]])+lazy[x];
}
int query(int x,int l,int r,int xl,int xr,int la){
if(xl<=l&&r<=xr) return Max[x]+la;
int mid=(l+r)>>1;la+=lazy[x];
if(xr<=mid) return query(ls[x],l,mid,xl,xr,la);
else if(xl>mid) return query(rs[x],mid+1,r,xl,xr,la);
else return max(query(ls[x],l,mid,xl,mid,la),query(rs[x],mid+1,r,mid+1,xr,la));
}
}seg;
struct link_cut_tree{
int c[N][2],fa[N];
bool isroot(int x){
return c[fa[x]][0]!=x && c[fa[x]][1]!=x;
}
void rotate(int x){
int y=fa[x],z=fa[y],l,r;
if(c[y][0]==x)l=0;else l=1;r=l^1;
if(!isroot(y)){
if(c[z][0]==y)c[z][0]=x;else c[z][1]=x;
}
fa[x]=z;fa[y]=x;fa[c[x][r]]=y;
c[y][l]=c[x][r];c[x][r]=y;
}
void splay(int x){
while(!isroot(x)){
int y=fa[x],z=fa[y];
if(!isroot(y)){
if((c[y][0]==x)^(c[z][0]==y)) rotate(x);
else rotate(y);
}
rotate(x);
}
}
void access(int x){
int t=0;
while(x){
splay(x);
if(c[x][1]){
int y=c[x][1];
while(c[y][0]) y=c[y][0];
seg.update(seg.rt,1,n,Tree.dfn[y],Tree.ed[y],1);
}
if(t){
int y=t;
while(c[y][0]) y=c[y][0];
seg.update(seg.rt,1,n,Tree.dfn[y],Tree.ed[y],-1);
}
c[x][1]=t;t=x;x=fa[x];
}
}
}LCT;
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<n;i++){
int x,y;scanf("%d%d",&x,&y);
Tree.lnk(x,y);
}
Tree.dfs1(1,0);Tree.dfs2(1,1);
for(int i=1;i<=n;i++) seg.insert(seg.rt,1,n,Tree.dfn[i],Tree.deep[i]);
for(int i=1;i<=n;i++) LCT.fa[i]=Tree.fa[i];
for(int i=1;i<=m;i++){
int type;scanf("%d",&type);
if(type==1){
int x;scanf("%d",&x);LCT.access(x);
}
if(type==2){
int x,y;scanf("%d%d",&x,&y);
int Lca=Tree.lca(x,y);
x=Tree.dfn[x],y=Tree.dfn[y],Lca=Tree.dfn[Lca];
printf("%d\n",seg.query(seg.rt,1,n,x,x,0)+seg.query(seg.rt,1,n,y,y,0)-2*seg.query(seg.rt,1,n,Lca,Lca,0)+1);
}
if(type==3){
int x;scanf("%d",&x);
printf("%d\n",seg.query(seg.rt,1,n,Tree.dfn[x],Tree.ed[x],0));
}
}
return 0;
}

  

然后对于第三个操作就是查询子树最大值。。。

bzoj 4817: [Sdoi2017]树点涂色的更多相关文章

  1. BZOJ 4817 [SDOI2017]树点涂色 (LCT+线段树维护dfs序)

    题目大意:略 涂色方式明显符合$LCT$里$access$操作的性质,相同颜色的节点在一条深度递增的链上 用$LCT$维护一个树上集合就好 因为它维护了树上集合,所以它别的啥都干不了了 发现树是静态的 ...

  2. 【刷题】BZOJ 4817 [Sdoi2017]树点涂色

    Description Bob有一棵n个点的有根树,其中1号点是根节点.Bob在每个点上涂了颜色,并且每个点上的颜色不同.定义一条路 径的权值是:这条路径上的点(包括起点和终点)共有多少种不同的颜色. ...

  3. BZOJ 4817: [Sdoi2017]树点涂色(LCT+树剖+线段树)

    题目描述 Bob有一棵 nn 个点的有根树,其中1号点是根节点.Bob在每个点上涂了颜色,并且每个点上的颜色不同. 定义一条路径的权值是:这条路径上的点(包括起点和终点)共有多少种不同的颜色. Bob ...

  4. BZOJ 4817: [Sdoi2017]树点涂色 LCT+Access的性质+DFS序+线段树

    Code: #include<bits/stdc++.h> #define maxn 200003 #define inf -1000000 using namespace std; vo ...

  5. BZOJ.4817.[SDOI2017]树点涂色(LCT DFS序 线段树)

    题目链接 操作\(1.2\)裸树剖,但是操作\(3\)每个点的答案\(val\)很不好维护.. 如果我们把同种颜色的点划分到同一连通块中,那么向根染色的过程就是Access()! 最初所有点间都是虚边 ...

  6. bzoj 4817: [Sdoi2017]树点涂色 LCT+树链剖分+线段树

    题目: Bob有一棵n个点的有根树,其中1号点是根节点.Bob在每个点上涂了颜色,并且每个点上的颜色不同. 定义一条路径的权值是:这条路径上的点(包括起点和终点)共有多少种不同的颜色. Bob可能会进 ...

  7. bzoj 4817: [Sdoi2017]树点涂色【树链剖分+LCT】

    非常妙的一道题. 首先对于操作一"把点x到根节点的路径上所有的点染上一种没有用过的新颜色",长得是不是有点像LCT中的access操作?进而发现,如果把同一颜色的点连起来作为LCT ...

  8. BZOJ 4817 [Sdoi2017]树点涂色 ——LCT 线段树

    同BZOJ3779. SDOI出原题,还是弱化版的. 吃枣药丸 #include <map> #include <cmath> #include <queue> # ...

  9. BZOJ 4817: [Sdoi2017]树点涂色(lct+线段树)

    传送门 解题思路 跟重组病毒这道题很像.只是有了一个询问\(2\)的操作,然后询问\(2\)的答案其实就是\(val[x]+val[y]-2*val[lca(x,y)]+1\)(画图理解).剩下的操作 ...

随机推荐

  1. 关于String中的不变模式

    不变模式 不变模式就是为了尽可能的去除并行中的同步操作,提高并行程序的性能,可以使用一种不可改变的对象,依靠对象的不变性,可以确保其在没有同步操作的多线程环境中依然始终保持内部状态的一致性和正确性.并 ...

  2. 最耗性能的SQL语句

    设计优化–常见杀手级SQL •SELECT * vsSELECT col1, col2 •ORDER BY RAND() •LIMIT huge_num, offset •SELECT COUNT(* ...

  3. wamp环境下如何安装redis扩展

    Redis安装 wamp环境安装redis扩展 首先在自己本地项目中phpinfo(); 查看php版本; (php版本是5.5, ts-vcll表示MSVC11 (Visual C++ 2012), ...

  4. 2734:十进制到八进制-poj

    总时间限制:  1000ms 内存限制:  65536kB 描述 把一个十进制正整数转化成八进制. 输入 一行,仅含一个十进制表示的整数a(0 < a < 65536). 输出 一行,a的 ...

  5. 使用sklearn进行数据挖掘-房价预测(5)—训练模型

    使用sklearn进行数据挖掘系列文章: 1.使用sklearn进行数据挖掘-房价预测(1) 2.使用sklearn进行数据挖掘-房价预测(2)-划分测试集 3.使用sklearn进行数据挖掘-房价预 ...

  6. Mysql基础--表的操作

    1.表的基本概念 每一行代表一条唯一的记录,每一列代表记录中的一个字段. 2.创建表 例子: 3.查看表结构 (1)DESCRIBE语句查看表定义 语法: 例子: (2)SHOW CREATE TAB ...

  7. 用lua+redis实现一个简单的计数器功能 (一)

    首先安装环境 依赖环境有 luajit http://luajit.org ngx_devel_kit https://github.com/simpl/ngx_devel_kit echo-ngin ...

  8. td-agent 收集日志到kafka的配置

    <source> @type tail path /data1/td-agent/wechat-tag*.log tag wechat-tag read_from_head true fo ...

  9. leecode -- 3sum Closet

    Given an array S of n integers, find three integers in S such that the sum is closest to a given num ...

  10. Office 365系列 (1)概览:完整的云中Office

    Office365(以下简称O365)是一个集Office,企业邮箱,日历,日程管理,音视频会议 ,企业网盘 ,企业协作平台为一体的,旨在提高团队办公效率,减少基础设施投资和IT运维压力的解决方案.在 ...