Description

Bob有一棵n个点的有根树,其中1号点是根节点。Bob在每个点上涂了颜色,并且每个点上的颜色不同。定义一条路
径的权值是:这条路径上的点(包括起点和终点)共有多少种不同的颜色。Bob可能会进行这几种操作:
1 x:
把点x到根节点的路径上所有的点染上一种没有用过的新颜色。
2 x y:
求x到y的路径的权值。
3 x y:
在以x为根的子树中选择一个点,使得这个点到根节点的路径权值最大,求最大权值。
Bob一共会进行m次操作

Input

第一行两个数n,m。
接下来n-1行,每行两个数a,b,表示a与b之间有一条边。
接下来m行,表示操作,格式见题目描述
1<=n,m<=100000 

Output

每当出现2,3操作,输出一行。
如果是2操作,输出一个数表示路径的权值
如果是3操作,输出一个数表示权值的最大值

Sample Input

5 6
1 2
2 3
3 4
3 5
2 4 5
3 3
1 4
2 4 5
1 5
2 4 5

Sample Output

3
4
2
2

HINT

Source

鸣谢infinityedge上传

这个题真的是醉得不行。。。

考虑到第一个操作很烦,但是我们可以用LCT的access来解决这一操作。。。

我们把这个点access的时候,把当前点的原来的重儿子所在的子树权值+1,把新接上来的重儿子的子树的权值-1。。。

(这个直接用线段树来实现。。。)

考虑到每次是染上一个未出现的颜色,可以画一下图来思考这样做的正确性:

只有原来的重儿子的子树的val值要改变(+1),其余儿子的val值是不变(只是换了一种别的颜色而已,总数不变)。。。

而新接上的重儿子的子树内因为少了当前点的颜色而需要-1(原来当前点和新重儿子是不同色的。。。)

注意这些修改都是找到深度最小的点的子树来修改。。。

然后对于第二个操作的查询,就是 查询val[u]+val[v]-2*val[lca(u,v)]+1。。。(因为u,v的颜色不相同,分lca的颜色讨论一下)

// MADE BY QT666
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<iostream>
#include<cstring>
using namespace std;
typedef long long ll;
const int N=300050;
int n,m;
struct tree{
int head[N],to[N],cnt,nxt[N],size[N],son[N],fa[N],top[N],dfn[N],ed[N],tt,deep[N];
void lnk(int x,int y){
to[++cnt]=y,nxt[cnt]=head[x],head[x]=cnt;
to[++cnt]=x,nxt[cnt]=head[y],head[y]=cnt;
}
void dfs1(int x,int f){
size[x]=1;deep[x]=deep[f]+1;
for(int i=head[x];i;i=nxt[i]){
int y=to[i];
if(y!=f){
fa[y]=x;dfs1(y,x);
size[x]+=size[y];
if(size[y]>size[son[x]]) son[x]=y;
}
}
}
void dfs2(int x,int ff){
top[x]=ff;dfn[x]=++tt;
if(son[x]) dfs2(son[x],ff);
for(int i=head[x];i;i=nxt[i]){
int y=to[i];
if(y!=son[x]&&y!=fa[x]) dfs2(y,y);
}
ed[x]=tt;
}
int lca(int x,int y){
while(top[x]!=top[y]){
if(deep[top[x]]<deep[top[y]]) swap(x,y);
x=fa[top[x]];
}
if(deep[x]<deep[y]) swap(x,y);
return y;
}
}Tree;
struct segment_tree{
int rt,Max[N],lazy[N],sz,ls[N],rs[N];
void insert(int &x,int l,int r,int v,int d){
if(!x) x=++sz;
if(l==r){Max[x]=d;return;}
int mid=(l+r)>>1;
if(v<=mid) insert(ls[x],l,mid,v,d);
else insert(rs[x],mid+1,r,v,d);
Max[x]=max(Max[ls[x]],Max[rs[x]]);
}
void update(int x,int l,int r,int xl,int xr,int tag){
if(xl<=l&&r<=xr){
Max[x]+=tag;lazy[x]+=tag;return;
}
int mid=(l+r)>>1;
if(xr<=mid) update(ls[x],l,mid,xl,xr,tag);
else if(xl>mid) update(rs[x],mid+1,r,xl,xr,tag);
else update(ls[x],l,mid,xl,mid,tag),update(rs[x],mid+1,r,mid+1,xr,tag);
Max[x]=max(Max[ls[x]],Max[rs[x]])+lazy[x];
}
int query(int x,int l,int r,int xl,int xr,int la){
if(xl<=l&&r<=xr) return Max[x]+la;
int mid=(l+r)>>1;la+=lazy[x];
if(xr<=mid) return query(ls[x],l,mid,xl,xr,la);
else if(xl>mid) return query(rs[x],mid+1,r,xl,xr,la);
else return max(query(ls[x],l,mid,xl,mid,la),query(rs[x],mid+1,r,mid+1,xr,la));
}
}seg;
struct link_cut_tree{
int c[N][2],fa[N];
bool isroot(int x){
return c[fa[x]][0]!=x && c[fa[x]][1]!=x;
}
void rotate(int x){
int y=fa[x],z=fa[y],l,r;
if(c[y][0]==x)l=0;else l=1;r=l^1;
if(!isroot(y)){
if(c[z][0]==y)c[z][0]=x;else c[z][1]=x;
}
fa[x]=z;fa[y]=x;fa[c[x][r]]=y;
c[y][l]=c[x][r];c[x][r]=y;
}
void splay(int x){
while(!isroot(x)){
int y=fa[x],z=fa[y];
if(!isroot(y)){
if((c[y][0]==x)^(c[z][0]==y)) rotate(x);
else rotate(y);
}
rotate(x);
}
}
void access(int x){
int t=0;
while(x){
splay(x);
if(c[x][1]){
int y=c[x][1];
while(c[y][0]) y=c[y][0];
seg.update(seg.rt,1,n,Tree.dfn[y],Tree.ed[y],1);
}
if(t){
int y=t;
while(c[y][0]) y=c[y][0];
seg.update(seg.rt,1,n,Tree.dfn[y],Tree.ed[y],-1);
}
c[x][1]=t;t=x;x=fa[x];
}
}
}LCT;
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<n;i++){
int x,y;scanf("%d%d",&x,&y);
Tree.lnk(x,y);
}
Tree.dfs1(1,0);Tree.dfs2(1,1);
for(int i=1;i<=n;i++) seg.insert(seg.rt,1,n,Tree.dfn[i],Tree.deep[i]);
for(int i=1;i<=n;i++) LCT.fa[i]=Tree.fa[i];
for(int i=1;i<=m;i++){
int type;scanf("%d",&type);
if(type==1){
int x;scanf("%d",&x);LCT.access(x);
}
if(type==2){
int x,y;scanf("%d%d",&x,&y);
int Lca=Tree.lca(x,y);
x=Tree.dfn[x],y=Tree.dfn[y],Lca=Tree.dfn[Lca];
printf("%d\n",seg.query(seg.rt,1,n,x,x,0)+seg.query(seg.rt,1,n,y,y,0)-2*seg.query(seg.rt,1,n,Lca,Lca,0)+1);
}
if(type==3){
int x;scanf("%d",&x);
printf("%d\n",seg.query(seg.rt,1,n,Tree.dfn[x],Tree.ed[x],0));
}
}
return 0;
}

  

然后对于第三个操作就是查询子树最大值。。。

bzoj 4817: [Sdoi2017]树点涂色的更多相关文章

  1. BZOJ 4817 [SDOI2017]树点涂色 (LCT+线段树维护dfs序)

    题目大意:略 涂色方式明显符合$LCT$里$access$操作的性质,相同颜色的节点在一条深度递增的链上 用$LCT$维护一个树上集合就好 因为它维护了树上集合,所以它别的啥都干不了了 发现树是静态的 ...

  2. 【刷题】BZOJ 4817 [Sdoi2017]树点涂色

    Description Bob有一棵n个点的有根树,其中1号点是根节点.Bob在每个点上涂了颜色,并且每个点上的颜色不同.定义一条路 径的权值是:这条路径上的点(包括起点和终点)共有多少种不同的颜色. ...

  3. BZOJ 4817: [Sdoi2017]树点涂色(LCT+树剖+线段树)

    题目描述 Bob有一棵 nn 个点的有根树,其中1号点是根节点.Bob在每个点上涂了颜色,并且每个点上的颜色不同. 定义一条路径的权值是:这条路径上的点(包括起点和终点)共有多少种不同的颜色. Bob ...

  4. BZOJ 4817: [Sdoi2017]树点涂色 LCT+Access的性质+DFS序+线段树

    Code: #include<bits/stdc++.h> #define maxn 200003 #define inf -1000000 using namespace std; vo ...

  5. BZOJ.4817.[SDOI2017]树点涂色(LCT DFS序 线段树)

    题目链接 操作\(1.2\)裸树剖,但是操作\(3\)每个点的答案\(val\)很不好维护.. 如果我们把同种颜色的点划分到同一连通块中,那么向根染色的过程就是Access()! 最初所有点间都是虚边 ...

  6. bzoj 4817: [Sdoi2017]树点涂色 LCT+树链剖分+线段树

    题目: Bob有一棵n个点的有根树,其中1号点是根节点.Bob在每个点上涂了颜色,并且每个点上的颜色不同. 定义一条路径的权值是:这条路径上的点(包括起点和终点)共有多少种不同的颜色. Bob可能会进 ...

  7. bzoj 4817: [Sdoi2017]树点涂色【树链剖分+LCT】

    非常妙的一道题. 首先对于操作一"把点x到根节点的路径上所有的点染上一种没有用过的新颜色",长得是不是有点像LCT中的access操作?进而发现,如果把同一颜色的点连起来作为LCT ...

  8. BZOJ 4817 [Sdoi2017]树点涂色 ——LCT 线段树

    同BZOJ3779. SDOI出原题,还是弱化版的. 吃枣药丸 #include <map> #include <cmath> #include <queue> # ...

  9. BZOJ 4817: [Sdoi2017]树点涂色(lct+线段树)

    传送门 解题思路 跟重组病毒这道题很像.只是有了一个询问\(2\)的操作,然后询问\(2\)的答案其实就是\(val[x]+val[y]-2*val[lca(x,y)]+1\)(画图理解).剩下的操作 ...

随机推荐

  1. css实现六边形图片(最简单易懂方法实现高逼格图片展示)

    不说别的,先上效果: 用简单的div配合伪元素,即可‘画出’这幅六边形图片,原理是三个相同宽高的div,通过定位旋转拼合成一个六边形,再利用背景图层叠,形成视觉上的一张整图.下面咱们一步一步来实现. ...

  2. 转:聚类、K-Means、例子、细节

    今天说聚类,但是必须要先理解聚类和分类的区别,很多业务人员在日常分析时候不是很严谨,混为一谈,其实二者有本质的区别. 分类其实是从特定的数据中挖掘模式,作出判断的过程.比如Gmail邮箱里有垃圾邮件分 ...

  3. 2017计算机学科夏令营上机考试-C:岛屿面积

    总时间限制:  1000ms 内存限制:  65536kB 描述 用一个n*m的二维数组表示地图,1表示陆地,0代表海水,每一格都表示一个1*1的区域.地图中的格子只能横向或者纵向连接(不能对角连接) ...

  4. css选择器的优先级问题

    当我们写页面的时候,不知道你会不会产生这样的问题,为什么我给他添加的这条样式分明已经选择到我要给的元素了,但是他的样式并没有生效,那是为什么呢? 定义的属性有冲突时,浏览器会选择用那一套样式呢,下面来 ...

  5. PHP防止SQL注入和XSS攻击

    PHP防止SQL注入和XSS攻击PHP防范SQL注入是一个非常重要的安全手段.一个优秀的PHP程序员除了要能顺利的编写代码,还需要具备使程序处于安全环境下的能力.说到网站安全,就不得不提到SQL注入( ...

  6. LCD显示GPS时钟[嵌入式系统]

    夏任务102:做一个GPS钟 实验要求 用RPi的串口连接一个GPS模块,从GPS得到实时时间,在7段数码管或LCD上显示 实验工具: Raspberry Pi Model B主机, 8G c10 S ...

  7. Ocelot网关

    Ocelot是一个.net core框架下的网关的开源项目,下图是官方给出的基础实现图,即把后台的多个服务统一到网关处,前端应用:桌面端,web端,app端都只用访问网关即可. Ocelot的实现原理 ...

  8. 强大的MobaXterm

    MOobaXterm是一款强大的远程终端登录软件. 1.多终端分屏 2.内建SFTP文件传输(这个功能用的太爽了) 等等 功能强大,还需要继续研究

  9. 基于UDP协议的socket编程

    UDP协议特点: 1.无连接.服务端与客户端传输数据之前不需要进行连接,且没有超时重发等机制,只是把数据通过网络发送出去.也正是因为此特点,所以基于UDP协议的socket的客户端在启动之前不需要先启 ...

  10. css3的动画特效--动画序列(animation)

    首先复习一下animation动画添加各种参数 (1)infinite参数,表示动画将无限循环.在速度曲线和播放次数之间还可以插入一个时间参数,用以设置动画延迟的时间.如希望使图标在1秒钟后再开始旋转 ...