EXTENDED LIGHTS OUT
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 11815   Accepted: 7577

Description

In an extended version of the game Lights Out, is a puzzle with 5 rows of 6 buttons each (the actual puzzle has 5 rows of 5 buttons each). Each button has a light. When a button is pressed, that button and each of its (up to four) neighbors above, below, right and left, has the state of its light reversed. (If on, the light is turned off; if off, the light is turned on.) Buttons in the corners change the state of 3 buttons; buttons on an edge change the state of 4 buttons and other buttons change the state of 5. For example, if the buttons marked X on the left below were to be pressed,the display would change to the image on the right. 

The aim of the game is, starting from any initial set of lights on in the display, to press buttons to get the display to a state where all lights are off. When adjacent buttons are pressed, the action of one button can undo the effect of another. For instance, in the display below, pressing buttons marked X in the left display results in the right display.Note that the buttons in row 2 column 3 and row 2 column 5 both change the state of the button in row 2 column 4,so that, in the end, its state is unchanged. 

Note: 
1. It does not matter what order the buttons are pressed. 
2. If a button is pressed a second time, it exactly cancels the effect of the first press, so no button ever need be pressed more than once. 
3. As illustrated in the second diagram, all the lights in the first row may be turned off, by pressing the corresponding buttons in the second row. By repeating this process in each row, all the lights in the first 
four rows may be turned out. Similarly, by pressing buttons in columns 2, 3 ?, all lights in the first 5 columns may be turned off. 
Write a program to solve the puzzle.

Input

The first line of the input is a positive integer n which is the number of puzzles that follow. Each puzzle will be five lines, each of which has six 0 or 1 separated by one or more spaces. A 0 indicates that the light is off, while a 1 indicates that the light is on initially.

Output

For each puzzle, the output consists of a line with the string: "PUZZLE #m", where m is the index of the puzzle in the input file. Following that line, is a puzzle-like display (in the same format as the input) . In this case, 1's indicate buttons that must be pressed to solve the puzzle, while 0 indicate buttons, which are not pressed. There should be exactly one space between each 0 or 1 in the output puzzle-like display.

Sample Input

2
0 1 1 0 1 0
1 0 0 1 1 1
0 0 1 0 0 1
1 0 0 1 0 1
0 1 1 1 0 0
0 0 1 0 1 0
1 0 1 0 1 1
0 0 1 0 1 1
1 0 1 1 0 0
0 1 0 1 0 0

Sample Output

PUZZLE #1
1 0 1 0 0 1
1 1 0 1 0 1
0 0 1 0 1 1
1 0 0 1 0 0
0 1 0 0 0 0
PUZZLE #2
1 0 0 1 1 1
1 1 0 0 0 0
0 0 0 1 0 0
1 1 0 1 0 1
1 0 1 1 0 1

Source

/*
* @Author: LyuC
* @Date: 2017-10-11 10:53:15
* @Last Modified by: LyuC
* @Last Modified time: 2017-10-11 19:45:51
*/
/*
题意:给你一个5*6的矩阵状态,每次你可以反转一个格子,上下左右的一个格子,会同时被反转
问你怎么样反转才能到达给定的状态 思路:以前用状压做过,最近看高斯消元所以再做一遍,先抽象出来线性方程:
(a[1]&&x[1])^(a[2]&&x[2])^...(a[n]&&x[n])=b[1]:
a[i]就是a[i][j]状态数组,x[i]是解集,表示的是每个位置按或者不按,b[i]就是i这个位置
的状态;
然后高斯消元解出x数组就可以了
*/
#include <iostream>
#include <stdio.h>
#include <cmath>
#include <string.h> #define MAXN 35 using namespace std; int t;
int x[MAXN];//解集
int a[MAXN][MAXN];
int equ,var; inline void Guass(){
for(int i=1;i<=var+1;i++){
x[i]=0;//初始化解
}
for(int col=1,k=1;col<=var&&k<=equ;col++,k++){//k当前枚举到第几行,col当前枚举到第几列
//找系数最大行
int maxk=k;
for(int i=k+1;i<=equ;i++){
if(a[maxk][col]<a[i][col]){
maxk=i;
}
}
if(maxk!=k){
for(int i=col;i<=var+1;i++){
swap(a[k][i],a[maxk][i]);
}
}
if(a[k][col]==0){
k--;
continue;
}
for(int i=k+1;i<=equ;i++){
if(a[i][col]!=0){
for(int j=col;j<=var+1;j++){
a[i][j]^=a[k][j];
}
}
}
}
for(int i=var;i>=1;i--){
x[i]=a[i][var+1];
for(int j=i+1;j<=var;j++){
x[i]^=(a[i][j]&&x[j]);
}
}
} inline void init(){//初始化矩阵
memset(a,0,sizeof a);
equ=30;
var=30;
for(int i=1;i<=5;i++){
for(int j=1;j<=6;j++){
int t=(i-1)*6+j;
a[t][t]=1;
if(i>1) a[(i-2)*6+j][t]=1;
if(i<5) a[i*6+j][t]=1;
if(j>1) a[(i-1)*6+j-1][t]=1;
if(j<6) a[(i-1)*6+j+1][t]=1;
}
}
} int main(){
// freopen("in.txt","r",stdin);
scanf("%d",&t);
for(int ca=1;ca<=t;ca++){
printf("PUZZLE #%d\n",ca);
init();
for(int i=1;i<=30;i++){
scanf("%d",&a[i][31]);
}
Guass();
for(int i=1;i<=30;i++){
if(i%6==0){
printf("%d\n",x[i]);
}else{
printf("%d ",x[i]);
}
}
}
return 0;
}

  

POJ1222EXTENDED LIGHTS OUT(高斯消元)的更多相关文章

  1. poj1222 EXTENDED LIGHTS OUT 高斯消元||枚举

    Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8481   Accepted: 5479 Description In an ...

  2. BZOJ 1770: [Usaco2009 Nov]lights 燈( 高斯消元 )

    高斯消元解xor方程组...暴搜自由元+最优性剪枝 -------------------------------------------------------------------------- ...

  3. POJ 1222 EXTENDED LIGHTS OUT (高斯消元)

    题目链接 题意:5*6矩阵中有30个灯,操作一个灯,周围的上下左右四个灯会发生相应变化 即由灭变亮,由亮变灭,如何操作使灯全灭? 题解:这个问题是很经典的高斯消元问题.同一个按钮最多只能被按一次,因为 ...

  4. POJ1222 EXTENDED LIGHTS OUT 高斯消元 XOR方程组

    http://poj.org/problem?id=1222 在学校oj用搜索写了一次,这次写高斯消元,haoi现场裸xor方程消元没写出来,真实zz. #include<iostream> ...

  5. BZOJ1770:[USACO]lights 燈(高斯消元,DFS)

    Description 貝希和她的閨密們在她們的牛棚中玩遊戲.但是天不從人願,突然,牛棚的電源跳閘了,所有的燈都被關閉了.貝希是一個很膽小的女生,在伸手不見拇指的無盡的黑暗中,她感到驚恐,痛苦與絕望. ...

  6. [poj1222]EXTENDED LIGHTS OUT(高斯消元)

    题意:每个灯开启会使自身和周围的灯反转,要使全图的灯灭掉,判断灯开的位置. 解题关键:二进制高斯消元模板题. 复杂度:$O({n^3})$ #include<cstdio> #includ ...

  7. [luoguP2962] [USACO09NOV]灯Lights(高斯消元 + dfs)

    传送门 先进行高斯消元 因为要求最少的开关次数,那么: 对于关键元,我们可以通过带入消元求出, 对于自由元,我们暴力枚举,进行dfs,因为只有开关两种状态,0或1 #include <cmath ...

  8. EXTENDED LIGHTS OUT (高斯消元)

    In an extended version of the game Lights Out, is a puzzle with 5 rows of 6 buttons each (the actual ...

  9. BZOJ 1770: [Usaco2009 Nov]lights 燈 [高斯消元XOR 搜索]

    题意: 经典灯问题,求最少次数 本题数据不水,必须要暴搜自由元的取值啦 想了好久 然而我看到网上的程序都没有用记录now的做法,那样做遇到自由元应该可能会丢解吧...? 我的做法是把自由元保存下来,枚 ...

  10. POJ 1222 EXTENDED LIGHTS OUT [高斯消元XOR]

    题意: $5*6$网格里有一些灯告诉你一开始开关状态,按一盏灯会改变它及其上下左右的状态,问最后全熄灭需要按那些灯,保证有解 经典问题 一盏灯最多会被按一次,并且有很明显的异或性质 一个灯作为一个方程 ...

随机推荐

  1. spring实例化dataSource使用jndi和jdbc两种方式

    一.使用jndi的方式 这种方式方便测试人员不需要改代码,直接改变tomcat的server.xml就可以更改数据库连接 spring创建bean <bean id="dataSour ...

  2. GCD之barrier

    1.在并行队列执行任务中,如果想让某一个任务先执行完后再执行其后面的任务,此时可以用dispatch_barrier_async,下图是dispatch_barrier_async函数的处理流程. 2 ...

  3. 在 macOS High Sierra 10.13 搭建 PHP 开发环境

    2017 年 9 月 26 日,苹果公司正式发布了新一代 macOS,版本为 High Sierra (11.13). macOS High Sierra 预装了 Ruby(2.3.3).PHP(7. ...

  4. 深入理解计算机系统_3e 第二章家庭作业答案

    初始完成者:哈尔滨工业大学 李秋豪 许可:除2.55对应代码外(如需使用请联系randy.bryant@cs.cmu.edu),任何人可以自由的使用,修改,分发本文档的代码. 本机环境: (有一些需要 ...

  5. LPCTSTR LPCWSTR LPCSTR 含义

    #ifdef UNICODE#define LPCTSTR LPCWSTR#else#define LPCTSTR LPCSTR#endif      LPCTSTR A 32-bit pointer ...

  6. 一次生产环境下MongoDB备份还原数据

    最近开发一个版本的功能当中用到了MongoDB分页,懒于造数据,于是就研究了下从生产环境上导出数据到本地来进行测试. 研究了一下,发现MongoDB的备份还原和MySQL语法还挺类似,下面请看详细介绍 ...

  7. BGP协议

    BGP属于自治系统间路由协议.BGP的主要目标是为处于不同AS中的路由器之间进行路由信息通信提供保障.BGP既不是纯粹的矢量距离协议,也不是纯粹的链路状态协议,通常被称为通路向量路由协议.这是因为BG ...

  8. MongoDB的全文检索(Text Search)功能

    自己的项目中用到了mongodb,需要做一个搜索功能,刚开始不知道怎么搞,查了mongodb有个全文检索功能. 全文检索分为两步 第一,建立索引 db.stores.createIndex( { na ...

  9. centos7下安装tesseract-ocr进行验证码识别

    摘要: centos7安装依赖库 tesseract配置 代码例子 centos7安装依赖库 安装centos系统依赖 yum install -y automake autoconf libtool ...

  10. 基于HTML5和WebGL的3D网络拓扑结构图

    现在,3D模型已经用于各种不同的领域.在医疗行业使用它们制作器官的精确模型:电影行业将它们用于活动的人物.物体以及现实电影:视频游戏产业将它们作为计算机与视频游戏中的资源:在科学领域将它们作为化合物的 ...