Holiday's Accommodation

Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 200000/200000 K (Java/Others)
Total Submission(s): 2925    Accepted Submission(s): 894

Problem Description
Nowadays, people have many ways to save money on accommodation when they are on vacation.
One of these ways is exchanging houses with other people.
Here is a group of N people who want to travel around the world. They live in different cities, so they can travel to some other people's city and use someone's house temporary. Now they want to make a plan that choose a destination for each person. There are 2 rules should be satisfied:
1. All the people should go to one of the other people's city.
2. Two of them never go to the same city, because they are not willing to share a house.
They want to maximize the sum of all people's travel distance. The travel distance of a person is the distance between the city he lives in and the city he travels to. These N cities have N - 1 highways connecting them. The travelers always choose the shortest path when traveling.
Given the highways' information, it is your job to find the best plan, that maximum the total travel distance of all people.
 
Input
The first line of input contains one integer T(1 <= T <= 10), indicating the number of test cases.
Each test case contains several lines.
The first line contains an integer N(2 <= N <= 105), representing the number of cities.
Then the followingN-1 lines each contains three integersX, Y,Z(1 <= X, Y <= N, 1 <= Z <= 106), means that there is a highway between city X and city Y , and length of that highway.
You can assume all the cities are connected and the highways are bi-directional.
 
Output
For each test case in the input, print one line: "Case #X: Y", where X is the test case number (starting with 1) and Y represents the largest total travel distance of all people.
 
Sample Input
2
4
1 2 3
2 3 2
4 3 2
6
1 2 3
2 3 4
2 4 1
4 5 8
5 6 5
 
Sample Output
Case #1: 18
Case #2: 62
 
Source
 
Recommend
chenyongfu   |   We have carefully selected several similar problems for you:  4119 4112 4114 4115 4111 

/*
题意:n个结点,每个节点都有一个房子和一个人,这些人都想环游世界,也就是所有结点都去一遍,他们旅游的时候会选则最近的路线,
让你求所有人都达成愿望之后最多的路程 思路:这个题光是题意就看了很长时间,刚开始理解成一个人只要到达一个城市就好了,显然理解偏了。
每一条路最多能给总路程提供的价值:很显然就是这条路两边的相对较小的定点数×这条路的长的,然后dfs搜一遍就好了
*/
#include<stdio.h>
#include<vector>
#include<string.h>
#include<iostream>
#define N 100005
using namespace std;
struct node
{
int to,len;//下一个节点是哪里,以to为重点的边多长
node(int x=,int y=)
{
to=x;len=y;
}
}fr[N];
vector<node > v[N];//构图用的数组
int t,n;
long long sum;
long long dp[N];//表示到i点位置,左边子树有多少个点
bool visit[N];//记录这个点走没走
void dfs(int id,int len)
{
//cout<<"id="<<id<<endl;
visit[id]=true;
//cout<<dp[id]<<endl;
for(int i=;i<v[id].size();i++)
{
int next=v[id][i].to;//下一步要走的路;
int next_len=v[id][i].len;//下一条路的长度
if(visit[next]) continue;//这一步走了就跳过
dfs(next,next_len);
dp[id]+=dp[next];
}
dp[id]++;
//cout<<"dp["<<id<<"]="<<dp[id]<<endl;
sum+=(long long)min(dp[id],n-dp[id])*len;
}
int main()
{
//freopen("in.txt","r",stdin);
scanf("%d",&t);
for(int l=;l<=t;l++)
{
sum=;
memset(dp,,sizeof dp);
memset(visit,false,sizeof visit);
scanf("%d",&n);
for(int i=;i<=n;i++)
v[i].clear();
for(int i=;i<n;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
//cout<<a<<" "<<b<<" "<<c<<endl;
v[a].push_back(node(b,c));
v[b].push_back(node(a,c));
}
dfs(,);
printf("Case #%d: %lld\n",l,sum*);
}
return ;
}

HDU 4118 Holiday's Accommodation(树形DP)的更多相关文章

  1. HDU 4118 Holiday's Accommodation

    Holiday's Accommodation Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 200000/200000 K (Jav ...

  2. hdu-4118 Holiday's Accommodation(树形dp+树的重心)

    题目链接: Holiday's Accommodation Time Limit: 8000/4000 MS (Java/Others)     Memory Limit: 200000/200000 ...

  3. HDU 4118 Holiday's Accommodation (dfs)

    题意:给n个点,每个点有一个人,有n-1条有权值的边,求所有人不在原来位置所移动的距离的和最大值. 析:对于每边条,我们可以这么考虑,它的左右两边的点数最少的就是要加的数目,因为最好的情况就是左边到右 ...

  4. hdu 4514 并查集+树形dp

    湫湫系列故事——设计风景线 Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Tot ...

  5. [HDU 5293]Tree chain problem(树形dp+树链剖分)

    [HDU 5293]Tree chain problem(树形dp+树链剖分) 题面 在一棵树中,给出若干条链和链的权值,求选取不相交的链使得权值和最大. 分析 考虑树形dp,dp[x]表示以x为子树 ...

  6. HDU - 4118 Holiday&#39;s Accommodation

    Problem Description Nowadays, people have many ways to save money on accommodation when they are on ...

  7. HDU 5293 Tree chain problem 树形dp+dfs序+树状数组+LCA

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5293 题意: 给你一些链,每条链都有自己的价值,求不相交不重合的链能够组成的最大价值. 题解: 树形 ...

  8. hdu 4003 Find Metal Mineral 树形DP

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4003 Humans have discovered a kind of new metal miner ...

  9. HDU 5758 Explorer Bo(树形DP)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5758 [题目大意] 给出一棵树,每条路长度为1,允许从一个节点传送到任意一个节点,现在要求在传送次 ...

随机推荐

  1. Qt--自定义View

    这是上一篇文章的续篇,关于自定义View. 多个View内部可以映射到同一个数据模型,也可以映射不同的数据结构:可以使用所有数据,也可以只使用部分数据.因为视图层与数据层的分离,操作相对比较灵活. 1 ...

  2. Mybatis逆向生成Mapper文件

    本文参考博客 http://blog.csdn.net/for_my_life/article/details/51228098 1. 在resources根目录下添加generator.proper ...

  3. Select()使用否?

    David Treadwell ,Windows Socket 的一位开发者,曾经在他的一篇名为"Developing Transport-Independent Applications ...

  4. Jenkins 在声明式 pipeline 中并行执行任务

    在持续集成的过程中,并行的执行那些没有依赖关系的任务可以缩短整个执行过程.Jenkins 的 pipeline 功能支持我们用代码来配置持续集成的过程.本文将介绍在 Jenkins 中使用声明式 pi ...

  5. hdu1356&hdu1944 博弈论的SG值(王道)

    S-NimProblem DescriptionArthur and his sister Caroll have been playing a game called Nim for some ti ...

  6. Python日期时间Date/Time

    Python程序可以处理多种方式的日期和时间.日期格式之间的转换是一种常见计算机的杂活. Python的时间和日历模块,能帮助处理日期和时间. Tick是什么? 为时间间隔,以秒为单位的浮点数.从“新 ...

  7. Hadoop(四)HDFS集群详解

    前言 前面几篇简单介绍了什么是大数据和Hadoop,也说了怎么搭建最简单的伪分布式和全分布式的hadoop集群.接下来这篇我详细的分享一下HDFS. HDFS前言: 设计思想:(分而治之)将大文件.大 ...

  8. 学习的Python教程中的一些问题

    2017开始学习Python,在网上找了很多教程,最后看到了Vamei的教程,感觉很简单易懂,但是过程中难免有不太容易理解的问题,做一些随笔,加深记忆亦可让以后学习的同学少走一些弯路. 1 Pytho ...

  9. HDU5661 Claris and XOR

    我们求二进制是怎么求的呢:先看看二进制的每一位代表多大:.......32 16 8 4 2 1 假如n=10, ..... 32>n ,不要. 16>n,不要. 8<=n,要,然后 ...

  10. HDU1257 最少拦截系统 (贪心+STL+二分)

    第一次在博客园写博客,好紧张 .博客搬家居然很多代码成了乱码,欲哭无泪,妈咪. 开学东西太多了吧,没时间写备注,有点时候只能贴个代码,以后有时间再加备注吧,只贴代码不是好习惯. 咦,贪心怎么写,我只会 ...