第六届蓝桥杯C++B组省赛
1.奖券数目
2.星系炸弹
3.三羊献瑞
4.格子中输出
5.九数组分数
6.加法变乘法
7.牌型种数
8.移动距离
9.垒骰子
10.生命之树
1.奖券数目
奖券数目
有些人很迷信数字,比如带“4”的数字,认为和“死”谐音,就觉得不吉利。
虽然这些说法纯属无稽之谈,但有时还要迎合大众的需求。某抽奖活动的奖券号码是5位数(10000-99999),要求其中不要出现带“4”的号码,主办单位请你计算一下,如果任何两张奖券不重号,最多可发出奖券多少张。
答案:52488
s.直接求就行了,8*9*9*9*9=52488
2.星系炸弹
星系炸弹
在X星系的广袤空间中漂浮着许多X星人造“炸弹”,用来作为宇宙中的路标。
每个炸弹都可以设定多少天之后爆炸。
比如:阿尔法炸弹2015年1月1日放置,定时为15天,则它在2015年1月16日爆炸。
有一个贝塔炸弹,2014年11月9日放置,定时为1000天,请你计算它爆炸的准确日期。
请填写该日期,格式为yyyy-mm-dd 即4位年份2位月份2位日期。比如:2015-02-19
答案:2017-08-05
s.使用表格快速求解。(当时是苦b的手算的。。。还好算对了。)
3.三羊献瑞
三羊献瑞
观察下面的加法算式:
祥 瑞生 辉
+ 三羊 献 瑞
-------------------
三 羊 生 瑞 气
其中,相同的汉字代表相同的数字,不同的汉字代表不同的数字。
请你填写“三羊献瑞”所代表的4位数字(答案唯一),不要填写任何多余内容。
答案:1085
s.这个么,暴力枚举就可以了。
c.
#include<iostream>
#include<stdio.h>
using namespace std; int main(){ /*
int xiang,rui,sheng,hui;
int san,yang,xian,rui;
int san,yang,sheng,rui,qi;
*/ int xiang,rui,sheng,hui;
int san,yang,xian;
int qi; int a,b,c; for(xiang=;xiang<=;++xiang){
for(rui=;rui<=;++rui){
if(rui==xiang)continue;
for(sheng=;sheng<=;++sheng){
if(sheng==xiang||sheng==rui)continue;
for(hui=;hui<=;++hui){
if(hui==xiang||hui==rui||hui==sheng)continue;
for(san=;san<=;++san){
if(san==xiang||san==rui||san==sheng||san==hui)continue;
for(yang=;yang<=;++yang){
if(yang==xiang||yang==rui||yang==sheng||yang==hui||yang==san)continue;
for(xian=;xian<=;++xian){
if(xian==xiang||xian==rui||xian==sheng||xian==hui||xian==san||xian==yang)continue;
for(qi=;qi<=;++qi){
if(qi==xiang||qi==rui||qi==sheng||qi==hui||qi==san||qi==yang||qi==xian)continue; a=xiang*+rui*+sheng*+hui;
b=san*+yang*+xian*+rui;
c=san*+yang*+sheng*+rui*+qi;
if(a+b==c){
//printf("%d+%d=%d\n",a,b,c);
printf("%d %d %d %d\n",san,yang,xian,rui);
}
}
}
}
}
}
}
}
} return ;
}
4.格子中输出
格子中输出
StringInGrid函数会在一个指定大小的格子中打印指定的字符串。
要求字符串在水平、垂直两个方向上都居中。
如果字符串太长,就截断。
如果不能恰好居中,可以稍稍偏左或者偏上一点。
下面的程序实现这个逻辑,请填写划线部分缺少的代码。
#include <stdio.h>
#include <string.h> void StringInGrid(int width, int height, const char* s)
{
int i,k;
char buf[];
strcpy(buf, s);
if(strlen(s)>width-) buf[width-]=; printf("+");
for(i=;i<width-;i++) printf("-");
printf("+\n"); for(k=; k<(height-)/;k++){
printf("|");
for(i=;i<width-;i++) printf(" ");
printf("|\n");
} printf("|"); printf("%*s%s%*s",_____________________________________________); //填空 printf("|\n"); for(k=(height-)/+; k<height-; k++){
printf("|");
for(i=;i<width-;i++) printf(" ");
printf("|\n");
} printf("+");
for(i=;i<width-;i++) printf("-");
printf("+\n");
} int main()
{
StringInGrid(,,"abcd1234");
return ;
}
答案:(width-strlen(buf)-2)/2,"",buf,(width-strlen(buf)-2+1)/2,""
s.在scanf里用*修饰符,是起到过滤读入的作用。比如一个有三列数值的数据,我只想得到第2列数值,可以在循环里用scanf(“%*d%d%*d”,a[i])来读入第i行的第2个数值到a[i]。
* 修饰符在printf中的含义完全不同。如果写成printf(“%6d”, 123),很多同学应该就不会陌生了,这是设置域宽的意思。同理,%6s也是域宽。* 修饰符正是用来更灵活的控制域宽。使用%*s,表示这里的具体域宽值由后面的实参决定,如printf(“%*s”,6, “abc”)就是把”abc”放到在域宽为6的空间中右对齐。
明白了 * 是用变量来控制域宽,那么这题就简单了,这里应该填写5个实参。然后字符长度的计算应该用buf而不是s,因为buf才是截断后的长度,用s的话,如果s长度超过了width-2,效果就不对了
5.九数组分数
九数组分数
1,2,3...9 这九个数字组成一个分数,其值恰好为1/3,如何组法?
下面的程序实现了该功能,请填写划线部分缺失的代码。
#include <stdio.h> void test(int x[])
{
int a = x[]* + x[]* + x[]* + x[];
int b = x[]* + x[]* + x[]* + x[]* + x[]; if(a*==b) printf("%d / %d\n", a, b);
} void f(int x[], int k)
{
int i,t;
if(k>=){
test(x);
return;
} for(i=k; i<; i++){
{t=x[k]; x[k]=x[i]; x[i]=t;}
f(x,k+);
_____________________________________________ // 填空处
}
} int main()
{
int x[] = {,,,,,,,,};
f(x,);
return ;
}
答案:{t=x[k]; x[k]=x[i]; x[i]=t;}
6.加法变乘法
加法变乘法
我们都知道:1+2+3+... + 49 = 1225
现在要求你把其中两个不相邻的加号变成乘号,使得结果为2015
比如:
1+2+3+...+10*11+12+...+27*28+29+...+49 =2015
就是符合要求的答案。
请你寻找另外一个可能的答案,并把位置靠前的那个乘号左边的数字提交(对于示例,就是提交10)。
答案:16
s.暴力枚举,枚举所有的可能的两个位置,用1225和2015分别减去这两个位置的值,看看是否相等。
c.
#include<iostream>
#include<stdio.h>
using namespace std; int main(){ int i,j;
int a,b; for(i=;i<=;++i){
for(j=i+;j<=;++j){
a=-(i+i+)-(j+j+);
b=-(i*(i+))-(j*(j+));
if(a==b){
printf("i=%d,j=%d\n",i,j);
}
}
} return ;
}
7.牌型种数
牌型种数
小明被劫持到X赌城,被迫与其他3人玩牌。
一副扑克牌(去掉大小王牌,共52张),均匀发给4个人,每个人13张。
这时,小明脑子里突然冒出一个问题:
如果不考虑花色,只考虑点数,也不考虑自己得到的牌的先后顺序,自己手里能拿到的初始牌型组合一共有多少种呢?
答案:3598180
s.这种结果填空题,怎么简单怎么来。。。暴力循环即可。。当时作死,用掌握还不大好的递归来写。。。悲剧。
c.
#include<iostream>
#include<stdio.h>
using namespace std; int main(){ int a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,aJ,aQ,aK;
int sum=; for(a1=;a1<=;++a1){
for(a2=;a2<=;++a2){
for(a3=;a3<=;++a3){
for(a4=;a4<=;++a4){
for(a5=;a5<=;++a5){
for(a6=;a6<=;++a6){
for(a7=;a7<=;++a7){
for(a8=;a8<=;++a8){
for(a9=;a9<=;++a9){
for(a10=;a10<=;++a10){
for(aJ=;aJ<=;++aJ){
for(aQ=;aQ<=;++aQ){
for(aK=;aK<=;++aK){
if(a1+a2+a3+a4+a5+a6+a7+a8+a9+a10+aJ+aQ+aK==){
++sum;
}
}
}
}
}
}
}
}
}
}
}
}
}
} printf("%d\n",sum); return ;
}
c2.现在上个递归搜索代码吧
#include<iostream>
#include<stdio.h>
using namespace std; int sum; void dfs(int cur,int tol){ if(tol>)return;
if(cur==){//13种牌都先完了
if(tol==){//正好13张
++sum;
}
return;
} int i;
for(i=;i<=;++i){
dfs(cur+,tol+i);
} } int main(){ sum=;
dfs(,);//从第1张牌开始选,当前手中有0张 printf("%d\n",sum); return ;
}
8.移动距离
移动距离
X星球居民小区的楼房全是一样的,并且按矩阵样式排列。其楼房的编号为1,2,3...
当排满一行时,从下一行相邻的楼往反方向排号。
比如:当小区排号宽度为6时,开始情形如下:
1 2 3 4 5 6
12 11 10 9 8 7
13 14 15 .....
我们的问题是:已知了两个楼号m和n,需要求出它们之间的最短移动距离(不能斜线方向移动)
输入为3个整数w m n,空格分开,都在1到10000范围内
w为排号宽度,m,n为待计算的楼号。
要求输出一个整数,表示m n两楼间最短移动距离。
例如:
用户输入:
6 8 2
则,程序应该输出:
4
再例如:
用户输入:
4 7 20
则,程序应该输出:
5
资源约定:
峰值内存消耗 <256M
CPU消耗 < 1ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意: main函数需要返回0
注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
注意: 所有依赖的函数必须明确地在源文件中 #include<xxx>, 不能通过工程设置而省略常用头文件。
提交时,注意选择所期望的编译器类型。
s.利用坐标的关系
c.
#include<iostream>
#include<stdio.h>
#include<algorithm>
using namespace std; int main(){ int w,m,n;
int x1,y1;
int x2,y2; while(~scanf("%d%d%d",&w,&m,&n)){
x1=(m-)/w;
y1=(m-)%w;
if(x1%!=){
y1=w--y1;
} x2=(n-)/w;
y2=(n-)%w;
if(x2%!=){
y2=w--y2;
} printf("%d\n",abs(x1-x2)+abs(y1-y2));
} return ;
}
9.垒骰子
垒骰子
赌圣atm晚年迷恋上了垒骰子,就是把骰子一个垒在另一个上边,不能歪歪扭扭,要垒成方柱体。
经过长期观察,atm 发现了稳定骰子的奥秘:有些数字的面贴着会互相排斥!
我们先来规范一下骰子:1 的对面是 4,2 的对面是 5,3 的对面是 6。
假设有 m 组互斥现象,每组中的那两个数字的面紧贴在一起,骰子就不能稳定的垒起来。
atm想计算一下有多少种不同的可能的垒骰子方式。
两种垒骰子方式相同,当且仅当这两种方式中对应高度的骰子的对应数字的朝向都相同。
由于方案数可能过多,请输出模10^9 + 7 的结果。
不要小看了 atm 的骰子数量哦~
「输入格式」
第一行两个整数 n m
n表示骰子数目
接下来 m 行,每行两个整数 a b ,表示 a 和 b 数字不能紧贴在一起。
「输出格式」
一行一个数,表示答案模10^9 + 7 的结果。
「样例输入」
2 1
1 2
「样例输出」
544
「数据范围」
对于 30% 的数据:n <= 5
对于 60% 的数据:n <= 100
对于 100% 的数据:0 < n <= 10^9, m <= 36
资源约定:
峰值内存消耗 <256M
CPU消耗 < 2000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意: main函数需要返回0
注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
注意: 所有依赖的函数必须明确地在源文件中 #include<xxx>, 不能通过工程设置而省略常用头文件。
提交时,注意选择所期望的编译器类型。
s.
法1:动态规划O(36n),题目0 < n <= 10^9,超时。另外使用滚动数组。
dp[i][j]代表高度为i,顶面骰子的顶面点数为j的叠骰子方案数。
法2:矩阵快速幂O(logn)
我们只考虑顶面的情况,最后乘上4^n即可。
我们设六阶矩阵An,其中An的第a行第b列表示第一层顶面数字为a、第n层顶面数字为b的所有排列的情况
记六阶矩阵X中,第a行第b列表示相邻两层的是否能成功连接的情况。a和b能连则为1,a和b不能连则为0(注意是相邻两层的顶面,不是衔接面,所以要转化,比如题给的1 2要改为1 5)。ps:不大明白为啥要同为顶面?
根据上述定义,易得递推式:
An = An-1X,且 A1 = E(六阶单位矩阵)
可得到An的表达式为An = Xn-1
那么ans就是矩阵 Xn-1 的36个元素之和
注意最后侧面的4^n也要二分幂不然会爆炸
c.动态规划O(36n)
#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std; #define MOD 1000000007 int flag[][];//-1可以相邻,0不能相邻
long long dp[][];//滚动数组,dp[i][j]代表高度为i,顶面骰子的顶面点数为j的叠骰子方案数
int convert[]={, , , , , , }; int main(){ int n,m;
int a,b;
int i,j,k;
int e;//滚动标志,就2个交换的话这样滚动(e=1-e)应该比%快点吧(其实加减法和%速度应该差不多少吧。)
long long sum; while(~scanf("%d%d",&n,&m)){ memset(flag,-,sizeof(flag)); for(i=;i<m;++i){
scanf("%d%d",&a,&b);
flag[a][b]=;
flag[b][a]=;
} e=;
for(i=;i<;++i){
dp[e][i]=;
} //骰子4面转动,乘以4 for(i=;i<=n;++i){
e=-e;//滚动数组 for(j=;j<;++j){
dp[e][j]=;
for(k=;k<;++k){
if(flag[k][convert[j]]==-){
dp[e][j]=(dp[e][j]+dp[-e][k]*)%MOD;
}
}
} } sum=;
for(i=;i<;++i){
sum=(sum+dp[e][i])%MOD;
} printf("%lld\n",sum);
} return ;
}
c2.矩阵快速幂O(logn)
#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std; #define N 6//N*N的矩阵
const int MOD=1e9+;// struct Matrix{
int mat[N][N];
}; Matrix mul(Matrix a,Matrix b){
Matrix ret;
int i,j,k;
for(i=;i<N;++i){
for(j=;j<N;++j){
ret.mat[i][j]=;
for(k=;k<N;++k){
ret.mat[i][j]+=a.mat[i][k]*b.mat[k][j];
ret.mat[i][j]%=MOD;
}
}
}
return ret;
} Matrix pow_matrix(Matrix a,int n){
Matrix ret;
memset(ret.mat,,sizeof(ret.mat));
int i;
for(i=;i<N;++i){
ret.mat[i][i]=;
}
Matrix temp=a;
while(n){
if(n&){
ret=mul(ret,temp);
}
temp=mul(temp,temp);
n>>=;
}
return ret;
} long long quick_pow(long long a,long long n){
long long ret=;
a=a%MOD;
while(n){
if(n&){
ret=ret*a;
ret%=MOD;
}
a=a*a;
a%=MOD;
n>>=;
}
return ret;
} Matrix matrix;//1可以相邻,0不能相邻
Matrix matrix2;
int convert[]={, , , , , , }; int main(){ int n,m;
int a,b;
int i,j,k;
long long sum;
long long sum2; while(~scanf("%d%d",&n,&m)){ for(i=;i<;++i){
for(j=;j<;++j){
matrix.mat[i][j]=;
}
} for(i=;i<m;++i){
scanf("%d%d",&a,&b);
matrix.mat[a-][convert[b]-]=;//这个转换注意下,同为顶面
matrix.mat[convert[b]-][a-]=;
} matrix2=pow_matrix(matrix,n-); sum=;
for(i=;i<;++i){
for(j=;j<;++j){
sum+=matrix2.mat[i][j];
sum%=MOD;
}
} sum2=quick_pow(,n);//n次方 sum=sum*sum2;
sum%=MOD; printf("%lld\n",sum);
} return ;
}
10.生命之树
生命之树
在X森林里,上帝创建了生命之树。
他给每棵树的每个节点(叶子也称为一个节点)上,都标了一个整数,代表这个点的和谐值。
上帝要在这棵树内选出一个非空节点集S,使得对于S中的任意两个点a,b,都存在一个点列 {a, v1, v2, ..., vk, b} 使得这个点列中的每个点都是S里面的元素,且序列中相邻两个点间有一条边相连。
在这个前提下,上帝要使得S中的点所对应的整数的和尽量大。
这个最大的和就是上帝给生命之树的评分。
经过atm的努力,他已经知道了上帝给每棵树上每个节点上的整数。但是由于 atm 不擅长计算,他不知道怎样有效的求评分。他需要你为他写一个程序来计算一棵树的分数。
「输入格式」
第一行一个整数 n 表示这棵树有 n 个节点。
第二行 n 个整数,依次表示每个节点的评分。
接下来 n-1 行,每行 2 个整数 u, v,表示存在一条 u 到 v 的边。由于这是一棵树,所以是不存在环的。
「输出格式」
输出一行一个数,表示上帝给这棵树的分数。
「样例输入」
5
1 -2 -3 4 5
4 2
3 1
1 2
2 5
「样例输出」
8
「数据范围」
对于 30% 的数据,n <= 10
对于 100% 的数据,0 < n <= 10^5, 每个节点的评分的绝对值不超过 10^6 。
资源约定:
峰值内存消耗 < 256M
CPU消耗 < 3000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意: main函数需要返回0
注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
注意: 所有依赖的函数必须明确地在源文件中 #include <xxx>, 不能通过工程设置而省略常用头文件。
提交时,注意选择所期望的编译器类型。
s.树形最大字段和.
c.代码来自网上
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
typedef long long LL;
const int MAXN=;
vector<int> tree[MAXN];
int w[MAXN];
int n;
LL dp[MAXN];
int vis[MAXN];
LL maxn;
void dfs(int u)
{
vis[u]=;
dp[u]=w[u];
LL sum=;
for(int i=;i<tree[u].size();i++)
{
int v=tree[u][i];
if(!vis[v])
{
dfs(v);
if(dp[v]>=)
sum+=dp[v];
}
}
if(sum>) dp[u]+=sum;
maxn=max(dp[u],maxn);
}
int main()
{
maxn=-0x3fffffffffffffff;
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d",&w[i]); for(int i=;i<=n-;i++)
{
int u,v;
scanf("%d%d",&u,&v);
tree[u].push_back(v);
tree[v].push_back(u);
}
dfs();
printf("%I64d\n",maxn); return ;
}
/*
-2 3 1 -5 2 4 7
2
3
4
5
6
7
*/
第六届蓝桥杯C++B组省赛的更多相关文章
- 第六届蓝桥杯java b组第五题
九数组分数 1,2,3…9 这九个数字组成一个分数,其值恰好为1/3,如何组法? 下面的程序实现了该功能,请填写划线部分缺失的代码. public class A { public static vo ...
- 第六届蓝桥杯java b组第十题
10.压缩变换(程序设计) 小明最近在研究压缩算法. 他知道,压缩的时候如果能够使得数值很小,就能通过熵编码得到较高的压缩比. 然而,要使数值很小是一个挑战. 最近,小明需要压缩一些正整数的序列,这些 ...
- 第六届蓝桥杯java b组第8题
乐羊羊饮料厂正在举办一次促销优惠活动.乐羊羊C型饮料,凭3个瓶盖可以再换一瓶C型饮料,并且可以一直循环下去,但不允许赊账. 请你计算一下,如果小明不浪费瓶盖,尽量地参加活动,那么,对于他初始买入的n瓶 ...
- 第六届蓝桥杯java b组第四题
第四题 两个整数做除法,有时会产生循环小数,其循环部分称为:循环节. 比如,11/13=6=>0.846153846153….. 其循环节为[846153] 共有6位. 下面的方法,可以求出循环 ...
- 第六届蓝桥杯java b组第三题
第三题 三羊献瑞 观察下面的加法算式: 其中,相同的汉字代表相同的数字,不同的汉字代表不同的数字. 请你填写“三羊献瑞”所代表的4位数字(答案唯一),不要填写任何多余内容. 答案这个题目完全可以使用暴 ...
- 第六届蓝桥杯java b组第二题
立方变自身 观察下面的现象,某个数字的立方,按位累加仍然等于自身. 1^3 = 1 8^3 = 512 5+1+2=8 17^3 = 4913 4+9+1+3=17 … 请你计算包括1,8,17在内, ...
- 第六届蓝桥杯java b组第一题
第一题 三角形面积 图中的所有小方格面积都是1. 那么,图中的三角形面积应该是多少呢? 请填写三角形的面积.不要填写任何多余内容或说明性文字. 填空答案 28 没什么好说的 第一题很水 估计就是为了增 ...
- 第七届蓝桥杯C++B组省赛
1.煤球数目 2.生日蜡烛 3.凑算式 4.快速排序 5.抽签 6.方格填数 7.剪邮票 8.四平方和 9.交换瓶子 10.最大比例 今天是周三了,周天刚考完,这次做的还是不好(上次是全省最后一名). ...
- 2015年第六届蓝桥杯C/C++B组省赛题目解析
一.奖券数目 有些人很迷信数字,比如带“4”的数字,认为和“死”谐音,就觉得不吉利.虽然这些说法纯属无稽之谈,但有时还要迎合大众的需求.某抽奖活动的奖券号码是5位数(10000-99999),要求其中 ...
随机推荐
- 标准C程序设计七---06
Linux应用 编程深入 语言编程 标准C程序设计七---经典C11程序设计 以下内容为阅读: <标准C程序设计>(第7版) 作者 ...
- dedecms--需要注意的细节
在系统的系统配置参数里面修改一些参数 1:站点设置: (1):站点根网址:本地测试的话:就是你设置的虚拟主机:http://www.abc.cc (2):网页主页链接:为空 2:核心设置: DedeC ...
- JS实现限行
一.JS代码实现 1. 机动车辆限行如下图所示: 具体详情请访问:http://www.bjjtgl.gov.cn/zhuanti/10weihao/index.html 2.JS代码实现 <! ...
- (25)python urllib库
urllib包包含4个模块,在python3里urllib导入要用包名加模块名的方式. 1.urllib.request 该模块主要用于打开HTTP协议的URL import urllib.reque ...
- Java ListIterator 与 Iterator 异同
一.概述 基于 fail-fast 机制,我们知道对于ArrayList等集合在迭代过程中是不可进行结构修改操作的,唯一能使用的结构修改操作只有Iterator接口中的remove()方法. 而jav ...
- 还在为不停build 烦恼么?看这里~~
如果你是一名开发者,还在为偶尔改一个坐标或者颜色值 就要重新build 好久,然后如果层次深 还要一步步进去看效果么?下面 为大家介绍一个很好的开源库 DYCI 他的github地址,首先下载到本 ...
- iOS的应用程序实现之间的内容分享
前言 我们在iOS的平台上想要实现不同应用之间的内容分享一般有几种常用方式: 一种第的英文通过AirDrop实现不同设备的应用之间文档和数据的分享; 第二种是给每个应用程序定义一个URL方案,通过访问 ...
- 【Linux学习笔记】栈与函数调用惯例
栈与函数调用惯例(又称调用约定)— 基础篇 记得一年半前参加百度的校招面试时,被问到函数调用惯例的问题.当时只是懂个大概,比如常见函数调用约定类型及对应的参数入栈顺序等.最近看书过程中,重新回顾了这些 ...
- 【LeetCode】Generate Parentheses 解题报告
[题目] Given n pairs of parentheses, write a function to generate all combinations of well-formed pare ...
- Visual Studio VS2013模块对于SAFESEH 映像是不安全的 怎么办
打开该项目的"属性页"对话框,会出现如下界面打开该项目的"属性页"对话框,会出现如下界面 然后单击"链接器"--"命令行&qu ...