传送门

应该是HNOI2008年最简单的一道题了吧……简单的组合数题,不过要换个思路。

我们直接考虑发生越狱的情况似乎有点复杂,那我们换个思路,考虑不发生越狱的情况,也就是两个有相同宗教的人不会坐在一起。

第一个人有m种宗教可以信仰,那么第2个就只有m-1种了,不过我们发现,之后,第3个人其实还可以信仰m-1种宗教……只要不和第2个人相同,第4个人和以后的人也同理。那么方案就是m * (m-1)^(n-1)

总的方案数是m^n,相减即为所求,注意取模的时候不要有负数。

看一下代码。

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cmath>
#define rep(i,a,n) for(int i = a;i <= n;i++)
#define per(i,n,a) for(int i = n;i >= a;i--)
#define enter putchar('\n') using namespace std;
typedef long long ll;
const int M = ;
const ll P = ; ll read()
{
ll ans = ,op = ;
char ch = getchar();
while(ch < '' || ch > '')
{
if(ch == '-') op = -;
ch = getchar();
}
while(ch >= '' && ch <= '')
{
ans *= ;
ans += ch - '';
ch = getchar();
}
return ans * op;
}
ll m,n;
ll qpow(ll a,ll b)
{
ll q = ;
while(b)
{
if(b&) q *= a,q %= P;
a *= a,a %= P;
b >>= ;
}
return q % P;
}
int main()
{
m = read(),n = read(),m %= P;
printf("%lld\n",(qpow(m,n) - m * qpow(m-,n-) % P + P) % P);
return ;
}

HNOI2008 越狱 (组合数学)的更多相关文章

  1. BZOJ 1008: [HNOI2008]越狱 组合数学

    原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1008 题解: 就很傻逼的组合数学啊... $$ans=M^N-M*(M-1)^{(N-1) ...

  2. [HNOI2008]越狱 (组合数学)

    题目描述 监狱有连续编号为 1-N 的 N 个房间,每个房间关押一个犯人,有 M 种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱. 输入输出 ...

  3. P3197 [HNOI2008]越狱[组合数学]

    题目来源:洛谷 题目描述 监狱有连续编号为 1…N 的 N 个房间,每个房间关押一个犯人,有 M 种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生 ...

  4. [BZOJ1008][HNOI2008]越狱 组合数学

    http://www.lydsy.com/JudgeOnline/problem.php?id=1008 正着直接算有点难,我们考虑反着来,用全集减补集. 总的方案数为$m^n$.第一个人有$m$种可 ...

  5. 洛谷 P3197 [HNOI2008]越狱 题解

    P3197 [HNOI2008]越狱 题目描述 监狱有连续编号为 \(1-N\) 的 \(N\) 个房间,每个房间关押一个犯人,有 \(M\) 种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗 ...

  6. bzoj1008 [HNOI2008]越狱

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5099  Solved: 2207 Description 监狱有 ...

  7. 【bzoj1008】[HNOI2008]越狱

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7692  Solved: 3296[Submit][Status] ...

  8. BZOJ 1008: [HNOI2008]越狱 快速幂

    1008: [HNOI2008]越狱 Description 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生 ...

  9. BZOJ 1008 [HNOI2008]越狱

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5166  Solved: 2242[Submit][Status] ...

  10. BZOJ1008: [HNOI2008]越狱-快速幂+取模

    1008: [HNOI2008]越狱 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8689  Solved: 3748 Description 监狱有 ...

随机推荐

  1. 在C#中使用Json.Net进行序列化和反序列化及定制化

    序列化(Serialize)是将对象转换成字节流,并将其用于存储或传输的过程,主要用途是保存对象的状态,以便在需要时重新创建该对象:反序列化(Deserialize)则是将上面的字节流转换为相应对象的 ...

  2. luogu P1351 联合权值

    题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...

  3. ios 处理内存警告

    iPhone下每个app可用的内存是被限制的,如果一个app使用的内存超过20M,则系统会向该app发送Memory Warning消息.收到此消息后,app必须正确处理,否则可能出错或者出现内存泄露 ...

  4. Spring启动流程

    首先,对于一个web应用,其部署在web容器中,web容器提供其一个全局的上下文环境,这个上下文就是ServletContext,其为后面的spring IoC容器提供宿主环境: 其次,在web.xm ...

  5. NSTimer与NSRunLoop的关系分析

    NSTimer与NSRunLoop的关系分析 发表于 2013 年 6 月 27 日 由 bluev | 6 次浏览 最近关于NSTimer和NSRunLoop的关系,做了一个小试验.代码地址:htt ...

  6. lib无法访问另外lib中的头文件

    工程中app已经有设置User Header Search Paths来包含了需要的头文件,但是个别的lib依然找不到头文件.解决方法: 选择这个lib,在Build Settings中查找选项Use ...

  7. android EditText禁止复制粘贴完整代码

    <!-- 定义基础布局LinearLayout --> <LinearLayout xmlns:android="http://schemas.android.com/ap ...

  8. POJ 1260 Pearls (动规)

    Pearls Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7210 Accepted: 3543 Description In ...

  9. 使用 Docker 在 Linux 上托管 ASP.NET Core 应用程序

    说在前面 在阅读本文之前,您必须对 Docker 的中涉及的基本概念以及常见命令有一定了解,本文侧重实战,不会对相关概念详述. 同时请确保您本地开发机器已完成如下安装: Docker 18.06 或更 ...

  10. Linux下mount FreeBSD分区

    假设须要从第二块硬盘复制文件.该硬盘格式化为UFS 2文件系统.怎样mount 由FreeBSD创建的UFS 2文件系统到Ubuntu系统上呢? UFS文件系统广泛的使用在不同的操作系统(比如:HP- ...