Description

大家常常感慨,要做好一件事情真的不容易,确实,失败比成功容易多了! 
做好“一件”事情尚且不易,若想永远成功而总从不失败,那更是难上加难了,就像花钱总是比挣钱容易的道理一样。 
话虽这样说,我还是要告诉大家,要想失败到一定程度也是不容易的。比如,我高中的时候,就有一个神奇的女生,在英语考试的时候,竟然把40个单项选择题全部做错了!大家都学过概率论,应该知道出现这种情况的概率,所以至今我都觉得这是一件神奇的事情。如果套用一句经典的评语,我们可以这样总结:一个人做错一道选择题并不难,难的是全部做错,一个不对。

不幸的是,这种小概率事件又发生了,而且就在我们身边: 
事情是这样的――HDU有个网名叫做8006的男性同学,结交网友无数,最近该同学玩起了浪漫,同时给n个网友每人写了一封信,这都没什么,要命的是,他竟然把所有的信都装错了信封!注意了,是全部装错哟!

现在的问题是:请大家帮可怜的8006同学计算一下,一共有多少种可能的错误方式呢?

 

Input

输入数据包含多个多个测试实例,每个测试实例占用一行,每行包含一个正整数n(1<n<=20),n表示8006的网友的人数。
 

Output

对于每行输入请输出可能的错误方式的数量,每个实例的输出占用一行。
 

Sample Input

2
3
 

Sample Output

1
2
可以使用著名的错排公式,

M(n)=(n-1)[M(n-2)+M(n-1)]

特殊地,M(1)=0,M(2)=1

#include"stdio.h"
int main()
{
long long ans[];
ans[]=;ans[]=;
for(int i=;i<=;i++)
ans[i]=(i-)*(ans[i-]+ans[i-]);
int n;
while(scanf("%d",&n)!=EOF) printf("%I64d\n",ans[n]);
return ;
}

集训第六周 数学概念与方法 计数 排列 L题的更多相关文章

  1. 集训第六周 数学概念与方法 数论 线性方程 I题

    Description The Sky is Sprite. The Birds is Fly in the Sky. The Wind is Wonderful. Blew Throw the Tr ...

  2. 集训第六周 数学概念与方法 数论 筛素数 H题

    Description 小明对数的研究比较热爱,一谈到数,脑子里就涌现出好多数的问题,今天,小明想考考你对素数的认识.  问题是这样的:一个十进制数,如果是素数,而且它的各位数字和也是素数,则称之为“ ...

  3. 集训第六周 数学概念与方法 概率 F题

    Submit Status Description Sometimes some mathematical results are hard to believe. One of the common ...

  4. 集训第六周 数学概念与方法 J题 数论,质因数分解

    Description Tomorrow is contest day, Are you all ready? We have been training for 45 days, and all g ...

  5. 集训第六周 数学概念与方法 概率 N题

    N - 概率 Time Limit:4000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Submit Status ...

  6. 集训第六周 数学概念与方法 概率 数论 最大公约数 G题

    Description There is a hill with n holes around. The holes are signed from 0 to n-1. A rabbit must h ...

  7. 集训第六周 数学概念与方法 UVA 11181 条件概率

    http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=18546 题意:有n个人会去超市,其中只有r个人会买东西,每个人独自买东西的概 ...

  8. 集训第六周 数学概念与方法 UVA 11722 几何概型

    ---恢复内容开始--- http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=31471 题意,两辆火车,分别会在[t1,t2],[ ...

  9. 集训第六周 古典概型 期望 D题 Discovering Gold 期望

    Description You are in a cave, a long cave! The cave can be represented by a 1 x N grid. Each cell o ...

随机推荐

  1. python_os.path模块用法

    python中os.path模块用法: dirname()  用于去掉文件名,返回目录所在的路径 >>> import os >>> os.path.dirname ...

  2. Linux命令-自动挂载文件/etc/fstab功能详解

    Linux命令-自动挂载文件etcfstab功能详解 一./etc/fstab文件的作用 磁盘被手动挂载之后都必须把挂载信息写入/etc/fstab这个文件中,否则下次开机启动时仍然需要重新挂载. 系 ...

  3. 【BZOJ3309】DZY Loves Math(线性筛)

    题目: BZOJ 3309 分析: 首先,经过一番非常套路的莫比乌斯反演(实在懒得写了),我们得到: \[\sum_{T=1}^n \sum_{d|T}f(d)\mu(\frac{T}{d})\lfl ...

  4. MyEclipse中Tomcat对应JVM的参数配置

    MyEclipse中Tomcat对应JVM的参数配置: -Xmx512M -Xms256M -XX:MaxPermSize=256m

  5. WPF学习11:基于MVVM Light 制作图形编辑工具(2)

    本文是WPF学习10:基于MVVM Light 制作图形编辑工具(1)的后续 这一次的目标是完成 两个任务. 画布 效果: 画布上,选择的方案是:直接以Image作为画布,使用RenderTarget ...

  6. AJPFX关于modifier总结

    修饰符总结 Modifiers        函数修饰符始终在返回值类型之前!!!        变量修饰符始终在变量类型之前!!!---------------------------------- ...

  7. AngularJS入门 & 分页 & CRUD示例

    一.AngularJS 简介 ​ AngularJS  诞生于2009年,由Misko Hevery 等人创建,后为Google所收购.是一款优秀的前端JS框架,已经被用于Google的多款产品当中. ...

  8. 直接插入排序法原理及其js实现

    直接插入排序法就像我们打扑克牌时整理牌面一样,先让我们脑补一下我们打牌的过程. 首先摸了一张6, 接着摸到一张4,比6小,插到6的前面: 又摸到一张7,比6大,插到6的后面: 又摸到一张5,比6小,比 ...

  9. Pycharm+Django+Python+MySQL开发 后台管理数据库

    Django框架十分简单易用,适合搭建个人博客网站.网上有很多教程,大多是关于命令行操作Django,这里分享一些用最新工具进行Django开发过程,主要是PyCharm太强大,不用有点可惜. 第一次 ...

  10. R in action读书笔记(22)第十六章 高级图形进阶(下)

    16.2.4 图形参数 在lattice图形中,lattice函数默认的图形参数包含在一个很大的列表对象中,你可通过trellis.par.get()函数来获取,并用trellis.par.set() ...