COJ 1163 乘法逆元的求解
乘法逆元就是求一个 a/b = c(mod m)在已知a%m , b%m 的条件下 求c的解
#include <cstdio>
#include <cstring> using namespace std;
#define ll long long
const int N = ;
int val[N]; ll ex_gcd(ll a , ll b , ll &x , ll &y)
{
if(b == ){
x= , y=;
return a;
}
ll ans = ex_gcd(b,a%b,x,y);
ll t=x;
x=y,y=t-a/b*y;
return ans;
} ll inv(ll a , ll b , ll mod)
{
ll x , y;
ll d = ex_gcd(b,mod,x,y);
return a*x%mod;
} int main()
{
int n,m;
while(scanf("%d%d" , &n , &m ) == )
{
ll sum = ;
for(int i= ; i<n ; i++){
scanf("%d" , val+i);
sum = (sum*val[i])%m;
}
for(int i= ; i<n ; i++){
ll ans = (inv(sum , (ll)val[i] , m)+m)%m;
if(i==) printf("%lld" , ans);
else printf(" %lld" , ans);
}
printf("\n");
}
return ;
}
COJ 1163 乘法逆元的求解的更多相关文章
- HDU1576 A/B(乘法逆元)
题目的代数系统可以看作整数模9973乘法群?然后存在乘法逆元. 于是题目要求$A \div B \pmod {9973} $其实就相当于求$A \times B^{-1}\pmod {9973} $. ...
- Light OJ 1067 Combinations (乘法逆元)
Description Given n different objects, you want to take k of them. How many ways to can do it? For e ...
- 51 Nod 1256 乘法逆元(数论:拓展欧几里得)
1256 乘法逆元 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K ...
- [P1082][NOIP2012] 同余方程 (扩展欧几里得/乘法逆元)
最近想学数论 刚好今天(初赛上午)智推了一个数论题 我屁颠屁颠地去学了乘法逆元 然后水掉了P3811 和 P2613 (zcy吊打集训队!)(逃 然后才开始做这题. 乘法逆元 乘法逆元的思路大致就是a ...
- 【learning】 扩展欧几里得算法(扩展gcd)和乘法逆元
有这样的问题: 给你两个整数数$(a,b)$,问你整数$x$和$y$分别取多少时,有$ax+by=gcd(x,y)$,其中$gcd(x,y)$表示$x$和$y$的最大公约数. 数据范围$a,b≤10^ ...
- 数论入门2——gcd,lcm,exGCD,欧拉定理,乘法逆元,(ex)CRT,(ex)BSGS,(ex)Lucas,原根,Miller-Rabin,Pollard-Rho
数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p ...
- 数学:乘法逆元-拓展GCD
乘法逆元应用在组合数学取模问题中,这里给出的实现不见得好用 给出拓展GCD算法: 扩展欧几里得算法是指对于两个数a,b 一定能找到x,y(均为整数,但不满足一定是正数) 满足x*a+y*b=gcd(a ...
- poj 1845 Sumdiv(约数和,乘法逆元)
题目: 求AB的正约数之和. 输入: A,B(0<=A,B<=5*107) 输出: 一个整数,AB的正约数之和 mod 9901. 思路: 根据正整数唯一分解定理,若一个正整数表示为:A= ...
- 洛谷 P3811 【模板】乘法逆元
P3811 [模板]乘法逆元 题目背景 这是一道模板题 题目描述 给定n,p求1~n中所有整数在模p意义下的乘法逆元. 输入输出格式 输入格式: 一行n,p 输出格式: n行,第i行表示i在模p意义下 ...
随机推荐
- home键拦截
代码: public class HomeKeyReceiver extends BroadcastReceiver { private static final String LOG_TAG = & ...
- 473 Matchsticks to Square 火柴拼正方形
还记得童话<卖火柴的小女孩>吗?现在,你知道小女孩有多少根火柴,请找出一种能使用所有火柴拼成一个正方形的方法.不能折断火柴,可以把火柴连接起来,并且每根火柴都要用到.输入为小女孩拥有火柴的 ...
- ssm(Spring、Springmvc、Mybatis)实战之淘淘商城-第三天(非原创)
文章大纲 一.课程介绍二.简单功能实现三.图片上传功能实战四.项目源码与资料下载五.参考文章 一.课程介绍 一共14天课程(1)第一天:电商行业的背景.淘淘商城的介绍.搭建项目工程.Svn的使用. ...
- AJPFX关于构造器的总结
构造器 构造器定义 构造器作用 构造器特点 构造器修饰符 默认构造器 构造器重载 构造器和一般函数的区 ...
- HTML5应用缓存与Web Workers
1.什么是应用程序缓存 HTML5引入了应用程序缓存,这意味着web应用可进行缓存,并可在没有因特网链接时进行访问. 2.应用缓存的优势 离线浏览 用户可在应用离线时使用它们 ...
- CSS定位内容
div.h1 或 p 元素常常被称为块级元素.这意味着这些元素显示为 一块内容,即“块框”.与之相反,span 和 strong 等元素称为“行 内元素”,这是因为它们的内容显示在行中,即 ...
- 初识react native遇到的问题
Andriod 使用react native时遇到的问题 打开现有项目报错: 从第一行Error可以知道是一个zip的压缩文件打不开,往下看应该是下载的Gradle文件有问题,提示也是让从新下 ...
- dede自定义表单放首页出错的解决办法
一.当自定义表单放首页提交的时候跳出这个页面怎么解决 二.解决办法 可能有多个from表单提交出错,也就是代码冲突的意思,只要把代码检查好,from提交不要重复冲突就可以了
- Redis 存储字符串和对象
今天用redis存储,发现客户端jedis提供的存储方法中存储的类型只有String和byte数据,没有能够存储对象的,网上发现可以序列化存储对象.这就开始了我第一次序列化之旅. 1 测试类 ...
- Farseer.net轻量级ORM开源框架 V1.x 入门篇:数据库配置文件
导航 目 录:Farseer.net轻量级ORM开源框架 目录 上一篇:Farseer.net轻量级ORM开源框架 V1.x 入门篇:新版本说明 下一篇:Farseer.net轻量级ORM开源框架 ...