COJ 1163 乘法逆元的求解
乘法逆元就是求一个 a/b = c(mod m)在已知a%m , b%m 的条件下 求c的解
#include <cstdio>
#include <cstring> using namespace std;
#define ll long long
const int N = ;
int val[N]; ll ex_gcd(ll a , ll b , ll &x , ll &y)
{
if(b == ){
x= , y=;
return a;
}
ll ans = ex_gcd(b,a%b,x,y);
ll t=x;
x=y,y=t-a/b*y;
return ans;
} ll inv(ll a , ll b , ll mod)
{
ll x , y;
ll d = ex_gcd(b,mod,x,y);
return a*x%mod;
} int main()
{
int n,m;
while(scanf("%d%d" , &n , &m ) == )
{
ll sum = ;
for(int i= ; i<n ; i++){
scanf("%d" , val+i);
sum = (sum*val[i])%m;
}
for(int i= ; i<n ; i++){
ll ans = (inv(sum , (ll)val[i] , m)+m)%m;
if(i==) printf("%lld" , ans);
else printf(" %lld" , ans);
}
printf("\n");
}
return ;
}
COJ 1163 乘法逆元的求解的更多相关文章
- HDU1576 A/B(乘法逆元)
题目的代数系统可以看作整数模9973乘法群?然后存在乘法逆元. 于是题目要求$A \div B \pmod {9973} $其实就相当于求$A \times B^{-1}\pmod {9973} $. ...
- Light OJ 1067 Combinations (乘法逆元)
Description Given n different objects, you want to take k of them. How many ways to can do it? For e ...
- 51 Nod 1256 乘法逆元(数论:拓展欧几里得)
1256 乘法逆元 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K ...
- [P1082][NOIP2012] 同余方程 (扩展欧几里得/乘法逆元)
最近想学数论 刚好今天(初赛上午)智推了一个数论题 我屁颠屁颠地去学了乘法逆元 然后水掉了P3811 和 P2613 (zcy吊打集训队!)(逃 然后才开始做这题. 乘法逆元 乘法逆元的思路大致就是a ...
- 【learning】 扩展欧几里得算法(扩展gcd)和乘法逆元
有这样的问题: 给你两个整数数$(a,b)$,问你整数$x$和$y$分别取多少时,有$ax+by=gcd(x,y)$,其中$gcd(x,y)$表示$x$和$y$的最大公约数. 数据范围$a,b≤10^ ...
- 数论入门2——gcd,lcm,exGCD,欧拉定理,乘法逆元,(ex)CRT,(ex)BSGS,(ex)Lucas,原根,Miller-Rabin,Pollard-Rho
数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p ...
- 数学:乘法逆元-拓展GCD
乘法逆元应用在组合数学取模问题中,这里给出的实现不见得好用 给出拓展GCD算法: 扩展欧几里得算法是指对于两个数a,b 一定能找到x,y(均为整数,但不满足一定是正数) 满足x*a+y*b=gcd(a ...
- poj 1845 Sumdiv(约数和,乘法逆元)
题目: 求AB的正约数之和. 输入: A,B(0<=A,B<=5*107) 输出: 一个整数,AB的正约数之和 mod 9901. 思路: 根据正整数唯一分解定理,若一个正整数表示为:A= ...
- 洛谷 P3811 【模板】乘法逆元
P3811 [模板]乘法逆元 题目背景 这是一道模板题 题目描述 给定n,p求1~n中所有整数在模p意义下的乘法逆元. 输入输出格式 输入格式: 一行n,p 输出格式: n行,第i行表示i在模p意义下 ...
随机推荐
- 算法和数据结构~Sqlserver索引使用的B树
B树相关概念 在B-树中查找给定关键字的方法是,首先把根结点取来,在根结点所包含的关键字K1,…,Kn查找给定的关键字(可用顺序查找或二分查找法),若找到等于给定值的关键字,则查找成功:否则,一定可以 ...
- Android开发学习——高德地图的实现
1.首先做好下边的准备: 1.1 http://lbs.amap.com/ 注册账号 1.2 下载 定位sdk 和 地图sdk 下载后是这样的 1.3 对下载的进行解压 将他们加入 中,对每 ...
- ssm(Spring、Springmvc、Mybatis)实战之淘淘商城-第三天(非原创)
文章大纲 一.课程介绍二.简单功能实现三.图片上传功能实战四.项目源码与资料下载五.参考文章 一.课程介绍 一共14天课程(1)第一天:电商行业的背景.淘淘商城的介绍.搭建项目工程.Svn的使用. ...
- 客户端负载均衡 - Ribbon
Ribbon是Netflix公司开源的一个负载均衡的项目(https://github.com/Netflix/ribbon),它是一个基于HTTP.TCP的客户端负载均衡器. 服务端负载均衡 负载均 ...
- Nodejs AES加密不一致问题的解决
最近在做android游戏,客户端与Nodejs服务端数据的交互用AES进行加密,发现Nodejs与java的加密形式不一样.查询N久资料发现java端需要对密钥再MD5加密一遍(我了个大擦),本来对 ...
- OC语言Block 续
OC语言 Block 转载:http://blog.csdn.net/weidfyr/article/details/48138167 1.Block对象中的变量行为 结论: 在block代码块内部可 ...
- 通过SSDT HOOK实现进程保护和进程隐藏
---恢复内容开始--- 首先,我要说一件很重要的事,本人文采不好,如果哪里说的尴尬了,那你就尴尬着听吧...... SSDT HOOK最初貌似源于Rookit,但是Rookit之前有没有其他病毒使用 ...
- leetcode_712. Minimum ASCII Delete Sum for Two Strings
https://leetcode.com/problems/minimum-ascii-delete-sum-for-two-strings/ 给定两个string s1,s2,从s1和s2中删除一些 ...
- Discuz 页面不能加载插件的原因和解决方法
模板中,<!--{subtemplate common/headerF}-->这样就不能加载 source/class/class_template.php里65行附近代码 $header ...
- python嵌套列表
从excel读取一行信息添加到一个临时列表,最后将所有行的列表添加到一个大列表. 源码: import xlrd,reclass Info(): def read_info(self): data = ...