题意:中文题。

析:直接运用Lucas定理即可。但是FZU好奇怪啊,我开个常数都CE,弄的工CE了十几次,在vj上还不显示。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
//#include <unordered_map>
//#include <tr1/unordered_map>
//#define freopenr freopen("in.txt", "r", stdin)
//#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
//using namespace std :: tr1; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
//const double inf = 0x3f3f3f3f3f3f;
//const LL LNF = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 10005;
//const LL mod = 10000000000007;
const int N = 1e6 + 5;
const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); }
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
LL p; LL quick_pow(LL a, LL n){
LL ans = 1;
a %= p;
while(n){
if(n & 1) ans = ans * a % p;
a = a * a % p;
n >>= 1;
}
return ans;
} LL C(LL n, LL m){
if(n < m) return 0;
LL a = 1, b = 1;
while(m){
a = a * n % p;
b = b * m % p;
--m; --n;
}
return a * quick_pow(b, p-2) % p;
} LL Lucas(LL n, LL m){
if(!m) return 1;
return C(n%p, m%p) * Lucas(n/p, m/p);
} int main(){
int T; cin >> T;
while(T--){
LL n, m;
scanf("%I64d %I64d %I64d", &n, &m, &p);
printf("%I64d\n", Lucas(n, m));
}
return 0;
}

FZU 2020 组合 (Lucas定理)的更多相关文章

  1. 快速求排列组合 lucas定理

    对于C(n, m) mod p.这里的n,m,p(p为素数)都很大的情况. 就不能再用C(n, m) = C(n - 1,m) + C(n - 1, m - 1)的公式递推了. 一般lucas定理的p ...

  2. FZU 2020 :组合 【lucas】

    Problem Description 给出组合数C(n,m), 表示从n个元素中选出m个元素的方案数.例如C(5,2) = 10, C(4,2) = 6.可是当n,m比较大的时候,C(n,m)很大! ...

  3. 组合 Lucas定理

    组合 Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u [Submit]   [Go Ba ...

  4. FZU 2020 组合

    组合数求模要用逆元,用到了扩展的欧几里得算法. #include<cstdio> int mod; typedef long long LL; void gcd(LL a,LL b,LL ...

  5. 【Lucas组合数定理】组合-FZU 2020

    组合 FZU-2020 题目描述 给出组合数C(n,m), 表示从n个元素中选出m个元素的方案数.例如C(5,2) = 10, C(4,2) = 6.可是当n,m比较大的时候,C(n,m)很大!于是x ...

  6. lucas定理 FOJ 2020 组合

     Problem 2020 组合 Accept: 886    Submit: 2084Time Limit: 1000 mSec    Memory Limit : 32768 KB Problem ...

  7. Bzoj 4591: [Shoi2015]超能粒子炮·改 数论,Lucas定理,排列组合

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 178  Solved: 70[Submit][Stat ...

  8. 【BZOJ4591】超能粒子炮·改(Lucas定理,组合计数)

    题意: 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威力上有了本质的提 ...

  9. 【BZOJ4403】序列统计(Lucas定理,组合计数)

    题意:给定三个正整数N.L和R, 统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量. 输出答案对10^6+3取模的结果. 对于100%的数据,1≤N,L,R≤10^9,1≤T≤100, ...

随机推荐

  1. Codevs 二叉树遍历问题 合集

    2010 求后序遍历 时间限制: 1 s 空间限制: 64000 KB 题目等级 : 白银 Silver   题目描述 Description 输入一棵二叉树的先序和中序遍历序列,输出其后序遍历序列. ...

  2. C++常见函数(备忘录)

    substr(string的成员函数) 语法: basic_string substr( size_type index, size_type num = npos ); substr()返回本字符串 ...

  3. msp430入门编程47

    msp430中C语言的人机交互--菜单退出 msp430入门编程 msp430入门学习

  4. 出现 Assigning the return value of new by reference is deprecated in xxxx &&“Warning: Call-time pass-by-reference has been deprecated”怎么办?

    自从php5.3,越来越多的人会遇到“Assigning the return value of new by reference is deprecated in xxxx”这样的提示,尤其是在国外 ...

  5. poj2773求第K个与m互质的数

    //半年前做的,如今回顾一下,还是有所收货的,数的唯一分解,.简单题. #include<iostream> #include<cstring> using namespace ...

  6. poj1523求割点以及割后连通分量数tarjan算法应用

    无向图,双向通道即可,tarjan算法简单应用.点u是割点,条件1:u是dfs树根,则u至少有2个孩子结点.||条件2:u不是根,dfn[u]=<low[v],v是u的孩子结点,而且每个这样的v ...

  7. P2835 刻录光盘

    洛谷—— P2835 刻录光盘 题目描述 在JSOI2005夏令营快要结束的时候,很多营员提出来要把整个夏令营期间的资料刻录成一张光盘给大家,以便大家回去后继续学习.组委会觉得这个主意不错!可是组委会 ...

  8. 使用Spring Data Redis操作Redis(单机版)

    说明:请注意Spring Data Redis的版本以及Spring的版本!最新版本的Spring Data Redis已经去除Jedis的依赖包,需要自行引入,这个是个坑点.并且会与一些低版本的Sp ...

  9. Java子类重写父类方法注意问题收集(转)

    子类不能重写父类的静态方法,私有方法.即使你看到子类中存在貌似是重写的父类的静态方法或者私有方法,编译是没有问题的,但那其实是你重新又定义的方法,不是重写.具体有关重写父类方法的规则如下: 重写规则之 ...

  10. [转] OracleDataReader.Read()是否有值

    TongYu2009的原文地址 当你执行一次OracleDataReader.Read()是Bool型),注意是只读取一个!如果你的Select语句执行结果是空,或者所有的结果都已经读取完了则Orac ...