设 g(x) = f(x) * x ,多项式 A = Σ g(i) * x^i , 多项式  B = Σ f(i) * x^i。

首先,g(x) = g(x-1) + g(x-2) + f(x-1) + 2f(x-2),所以我们可以得到: A = x * A + x^2 * A + x * B + 2 * x^2 * B + x

又因为B是斐波那契数列的多项式,所以B的闭形式可以直接得到,就是  x/(1-x-x^2)   [这个也不难推,可以自己推推]。

于是我们可以开开心心的解出A的闭形式,发现分母是 (1-x-x^2)^2.

然后我们再把 A^3 求出来就可以直接得到答案了, 这个时候分母就是 (1-x-x^2)^6 ,于是我们就可以直接得到一个 A^3 代表的函数的递推式(最好选择让计算机多项式乘法算递推式的系数,不然手算很可能会gg),每一项之和前面的12项有关。 [至于为什么不用考虑分子->因为分子的x的次数和系数只能决定生成函数整体的伸缩和平移,而和递推式没有任何联系,所以可以直接忽略]。

所以现在就可以直接矩阵快速幂了。

是吗?

发现极限数据可能会有 10^5 级别的数据组数,总的复杂度就是 O(10^5 * 12^3 * log(10^18)),然后就凉了。

不过发现M<=100的时候这个数列的循环节特别短,所以可以直接预处理出来然后 M<=100的时候O(1)回答询问。

emmmm,这就做完了

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<cstring>
#define ll long long
using namespace std;
int M,T,NUM[13]={0,6,-9,-10,30,6,-41,-6,30,10,-9,-6,-1};
int f[233],F[233],A[12],B[12];
int ans[105][100005],C[13],len[105];
inline int add(int x,int y,const int ha){
x+=y;
return x>=ha?x-ha:x;
}
struct node{
int a[12][12];
inline void clear(){ memset(a,0,sizeof(a));}
inline void BASE(){ clear(); for(int i=0;i<12;i++) a[i][i]=1;}
node operator *(const node &u)const{
node r; r.clear();
for(int k=0;k<12;k++)
for(int i=0;i<12;i++)
for(int j=0;j<12;j++) r.a[i][j]=add(r.a[i][j],a[i][k]*(ll)u.a[k][j]%M,M);
return r;
}
}ANS,X;
ll N,ci[66]; inline void init(){
ci[0]=1;
for(int i=1;i<=60;i++) ci[i]=ci[i-1]+ci[i-1]; f[1]=f[2]=1;
for(int i=3;i<=12;i++) f[i]=f[i-1]+f[i-2];
for(int i=1;i<=12;i++)
for(int j=1;i+j<=12;j++)
for(int l=1;l+i+j<=12;l++) F[i+j+l]+=f[i]*f[j]*f[l]*i*j*l; for(M=2;M<=100;M++){
for(int i=1;i<=12;i++) C[i]=add(NUM[i]%M,M,M),ans[M][i]=add(F[i]%M,M,M);
for(int i=13;i;i++){
for(int j=1;j<=12;j++) ans[M][i]=add(ans[M][i],C[j]*(ll)ans[M][i-j]%M,M);
bool flag=1;
for(int j=1;j<=12;j++) if(ans[M][j]!=ans[M][i+j-12]){
flag=0;
break;
} if(flag){
len[M]=i-12;
break;
}
}
}
} inline void solve(){
scanf("%d%lld",&M,&N);
if(M==1) puts("0");
else if(N<=12) printf("%d\n",add(F[N]%M,M,M)*6ll%M);
else if(M<=100) printf("%d\n",ans[M][(N-1)%len[M]+1]*6ll%M);
else{
X.clear(),ANS.BASE(),N-=12;
for(int i=0;i<11;i++) X.a[i][i+1]=1;
for(int i=0;i<12;i++) X.a[i][0]=add(NUM[i+1]%M,M,M);
for(;N;N>>=1,X=X*X) if(N&1) ANS=ANS*X; for(int i=0;i<12;i++) A[i]=add(F[12-i]%M,M,M);
memset(B,0,sizeof(B));
for(int j=0;j<12;j++)
for(int l=0;l<12;l++) B[l]=add(B[l],A[j]*(ll)ANS.a[j][l]%M,M);
printf("%d\n",B[0]*6ll%M);
}
} int main(){
// freopen("sigfib.in","r",stdin);
// freopen("sigfib.out","w",stdout);
init();
scanf("%d",&T);
while(T--) solve();
return 0;
}

  

某考试 T1 sigfib的更多相关文章

  1. 考试T1总结(又CE?!)

    考试T1CE... 最近不适合考试 T1 扶苏是个喜欢一边听古风歌一边写数学题的人,所以这道题其实是五三原题.歌曲中的主人公看着墙边的海棠花,想起当年他其实和自己沿着墙边种了一排海棠,但是如今都已枯萎 ...

  2. 某考试T1 game

    题目背景 无 题目描述 Alice 和 Bob 在一个圆环上玩游戏.圆环上有 n 个位置,按照顺时针顺序 依次标号为 1 到 n.Alice 和 Bob 分别有一个数字集合,集合中都是在 [1, n− ...

  3. 某考试 T1 arg

    题目描述 给出一个长度为 m 的序列 A, 请你求出有多少种 1...n 的排列, 满足 A 是它的一个 LIS. 输入格式 第一行两个整数 n, m. 接下来一行 m 个整数, 表示 A. 输出格式 ...

  4. 某考试 T1 lcm

    把lcm写成 (a+n)*(b+n) / gcd(a+n,b+n). 因为gcd可以辗转相减,所以就成了gcd(abs(a-b),a+n),一个常量一个变量之间的gcd,我们可以直接把abs(a-b) ...

  5. 2019.2.25考试T1, 矩阵快速幂加速递推+单位根反演(容斥)

    \(\color{#0066ff}{题解}\) 然后a,b,c通过矩阵加速即可 为什么1出现偶数次3没出现的贡献是上面画绿线的部分呢? 考虑暴力统计这部分贡献,答案为\(\begin{aligned} ...

  6. 2019.2.14 考试T1 FFT

    \(\color{#0066ff}{ 题目描述 }\) 衡水二中的机房里经常有人莫名其妙地犇雷,leizi很生气,决定要找出那个犇雷的人 机房有n个人,每个人都认为机房里有两个人可能会犇雷,其中第i个 ...

  7. 某考试 T1 fair (18.5.1版)

    转化一下模型:每天可以选1也可以选0,但是任意前i天(i<=n)1的个数都必须>=0的个数,求总方案数/2^n. 然后可以发现这是一个经典题,随便推一下公式发现等于  C(n,n/2)/2 ...

  8. 某考试 T1 str

    一开始死磕sam,发现根本没法做...... 后来想了想,反正匹配子串的大部分不是sam就是 二分+hash啊,,,于是就想了想二分+hash,发现好像可以做啊! 就是假设我们要让 s1[1] 映射到 ...

  9. 某考试 T1 monopoly

    可以很容易的发现,如果选了最高的房子,那么就不能再选了:否则在左边选一坨合法的,在右边选一坨合法的,拼起来还是合法的. 所以我们可以处理出,每个数的控制区间[L,R] (保证这个区间是其他数都小于它的 ...

随机推荐

  1. 有C++特色的极乐净土

    闲的没事瞎打的 在win7下会走调,需要将win7的beep系统文件改成xp的,且主机装有蜂鸣器才能正常收听. beep文件的度盘地址(不过应该没人为了听个这个去改系统文件)(P.S.如果想要尝试,尽 ...

  2. 使用Auto Layout中的VFL(Visual format language)--代码实现自动布局

    使用Auto Layout中的VFL(Visual format language)--代码实现自动布局 2014-12-09 10:56 编辑: zhiwupei 分类:iOS开发 来源:机智的新手 ...

  3. vue新手入坑之mounted和created的区别(生命周期)

    这几个月用vue框架新做了一个项目,也算是边学习边实践吧.学习中也看过一些别人的开源项目,起初对mounted和created有一些疑惑,查询相关资料发现,这和vue的生命周期有关,在此也就做一个总结 ...

  4. ThreadLocal类使用说明

      ThreadLocal类用于创建一个线程本地变量   在Thread中有一个成员变量ThreadLocals,该变量的类型是ThreadLocalMap,也就是一个Map,它的键是threadLo ...

  5. (49)zabbix事件是什么?事件来源有哪些分类

    什么是zabbix 事件 在trigger的文章内,我们已经有用到事件,这个事件要讲概念真心不知道怎么说,就拿trigger事件来说,如果trigger从当前值ok转变为problem,那么我们称之为 ...

  6. linux中test的意义 又可以表示为[]

    测试标志 代表意义 文件名.文件类型 -e 该文件名是否存在 -f 该文件名是否存在且为file -d 该文件名是否存在且为目录 -b 该文件名是否存在且为一个block -c 该文件名是否存在且为一 ...

  7. Python中的socket网络编程(TCP/IP,UDP)讲解

    在网络编程中的一个基本组件就是套接字(socket).套接字基本上是两个端点的程序之间的"信息通道".程序可能分布在不同的计算机上,通过套接字互相发送信息.套接字包括两个:服务器套 ...

  8. ajax dataType

    dataType 类型:String 预期服务器返回的数据类型.如果不指定,jQuery 将自动根据 HTTP 包 MIME 信息来智能判断,比如 XML MIME 类型就被识别为 XML.在 1.4 ...

  9. PYDay14:反射、面向对象基础-封装、集成、多态

    1.反射 通过字符串的形式,导入模块再通过字符串的形式,去模块中寻找指定的函数并执行eg:__import__(模块) 更加字符串的形式去对象(某个模块)中操作其成员 常用方法: getattr() ...

  10. swift写一个简单的列表unable to dequeue a cell with identifier reuseIdentifier - must register a nib or a cla

    报错:unable to dequeue a cell with identifier reuseIdentifier - must register a nib or a class for the ...