Codeforces 486D Valid Sets (树型DP)
题目链接 Valid Sets
题目要求我们在一棵树上计符合条件的连通块的个数。
满足该连通块内,点的权值极差小于等于d
树的点数满足 n <= 2000
首先我们先不管这个限制条件,也就是先考虑d为正无穷大的时候的情况。
我们要求出树上所有连通块的个数。
这个时候我们令f[i]为以i为根的子树中的连通块的数目。
此时状态转移方程为 f[x] = f[x] * (f[u] + 1)
其中f[x]初始值为1,u为x的儿子
最后f[1]的值(我们假设1为根结点)即为答案
时间复杂度为O(n)
注意到n只有2000,说明这题的时间复杂度不止O(n)
那么我们对于每一个点,以他的权值作为连通块的权值最小值。
于是就可以以他为根做一次DFS。
若DFS的过程中碰到权值比他小的点,或者权值减他的权值大于d的点,我们就不往这个点DFS下去。
但是有一种特殊情况
这样做可能导致重复计算
因为这样的方法会导致两个权值相同切且相连的点组成的连通块被计算多次。
于是我们对那些权值相同切且相连的点的边,定一个方向。
规定编号小的点能DFS到编号大,和他相连且权值和他相等的点
但是反过来就不行了。
这样规定了一个方向之后我们就消除了重复计算的问题。
时间复杂度 $O(n^{2})$
#include <bits/stdc++.h> using namespace std; #define rep(i, a, b) for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i) typedef long long LL; const int N = 2010;
const LL mod = 1e9 + 7; vector <int> v[N];
int n, d, et, cnt;
int a[N];
LL f[N];
LL ans = 0; void dfs(int x, int fa){
LL now = 0;
f[x] = 1;
for (auto u : v[x]){
if (u == fa) continue;
if (a[u] > cnt + d || a[u] < cnt) continue;
if (a[u] == cnt && u < et) continue;
dfs(u, x);
(f[x] *= f[u] + 1) %= mod;
}
} int main(){ scanf("%d%d", &d, &n);
rep(i, 1, n) scanf("%d", a + i);
rep(i, 1, n - 1){
int x, y;
scanf("%d%d", &x, &y);
v[x].push_back(y);
v[y].push_back(x);
} rep(i, 1, n){
cnt = a[i]; et = i;
memset(f, 0, sizeof f);
dfs(i, 0);
(ans += f[i]) %= mod;
} printf("%lld\n", ans);
return 0;
}
Codeforces 486D Valid Sets (树型DP)的更多相关文章
- Codeforces 486D Valid Sets:Tree dp【n遍O(n)的dp】
题目链接:http://codeforces.com/problemset/problem/486/D 题意: 给你一棵树,n个节点,每个节点的点权为a[i]. 问你有多少个连通子图,使得子图中的ma ...
- Codeforces 486D. Valid Sets
D. Valid Sets time limit per test 1 second memory limit per test 256 megabytes input standard input ...
- Codeforces 23E Tree(树型DP)
题目链接 Tree $dp[x][i]$表示以x为根的子树中x所属的连通快大小为i的时候 答案最大值 用$dp[x][j]$ * $dp[y][k]$ 来更新$dp[x][j + k]$. (听高手说 ...
- Codeforces 149D Coloring Brackets(树型DP)
题目链接 Coloring Brackets 考虑树型DP.(我参考了Q巨的代码还是略不理解……) 首先在序列的最外面加一对括号.预处理出DFS树. 每个点有9中状态.假设0位不涂色,1为涂红色,2为 ...
- Codeforces 581F Zublicanes and Mumocrates(树型DP)
题目链接 Round 322 Problem F 题意 给定一棵树,保证叶子结点个数为$2$(也就是度数为$1$的结点),现在要把所有的点染色(黑或白) 要求一半叶子结点的颜色为白,一半叶子结点的 ...
- 【题解】codeforces 219D Choosing Capital for Treeland 树型dp
题目描述 Treeland国有n个城市,这n个城市连成了一颗树,有n-1条道路连接了所有城市.每条道路只能单向通行.现在政府需要决定选择哪个城市为首都.假如城市i成为了首都,那么为了使首都能到达任意一 ...
- POJ3659 Cell Phone Network(树上最小支配集:树型DP)
题目求一棵树的最小支配数. 支配集,即把图的点分成两个集合,所有非支配集内的点都和支配集内的某一点相邻. 听说即使是二分图,最小支配集的求解也是还没多项式算法的.而树上求最小支配集树型DP就OK了. ...
- POJ 3342 - Party at Hali-Bula 树型DP+最优解唯一性判断
好久没写树型dp了...以前都是先找到叶子节点.用队列维护来做的...这次学着vector动态数组+DFS回朔的方法..感觉思路更加的清晰... 关于题目的第一问...能邀请到的最多人数..so ea ...
- 【XSY1905】【XSY2761】新访问计划 二分 树型DP
题目描述 给你一棵树,你要从\(1\)号点出发,经过这棵树的每条边至少一次,最后回到\(1\)号点,经过一条边要花费\(w_i\)的时间. 你还可以乘车,从一个点取另一个点,需要花费\(c\)的时间. ...
随机推荐
- 解决Genymotion2.8.1在拖动安装APK文件出现ARMtranslate错误
转载文章:http://blog.csdn.net/solo_talk/article/details/68488129 在新版本的genymotion中,我们拖动安装APK文件的时候会出现一个问题, ...
- shell脚本,awk替换{}里面的内容
如何将oxo{axbxc}oxo{dxexf}oxo里面的{}里面的x 替换为; 用awk实现 [root@localhost 09-30]# echo 'oxo{axbxc}oxo{dxexf}ox ...
- quartz测试类
package demo.mytest; import java.text.ParseException; import org.quartz.CronTrigger;import org.quart ...
- java 操作mongodb查询条件的常用设置
java操作mongodb进行查询,常用筛选条件的设置如下: 条件列表:BasicDBList condList = new BasicDBList(); 临时条件对象:BasicDBObject c ...
- Shell脚本调用Oralce数据库SQL文生产日志
#!/bin/shexport LANG="zh.CN.GBK" echo -n "******************************************* ...
- java在线聊天项目 swt可视化窗口Design 好友列表窗口
熟练使用各种布局方式 FlowLayout 流布局 left center right等 BorderLayout 边框布局 east west sorth north center Absolute ...
- Java异常 Exception类及其子类
C语言时用if...else...来控制异常,Java语言所有的异常都可以用一个类来表示,不同类型的异常对应不同的子类异常,每个异常都对应一个异常类的对象. Java异常处理通过5个关键字try.ca ...
- 总结:JavaScript异步、事件循环与消息队列、微任务与宏任务
本人正在努力学习前端,内容仅供参考.由于各种原因(不喜欢博客园的UI),大家可以移步我的github阅读体验更佳:传送门,喜欢就点个star咯,或者我的博客:https://blog.tangzhen ...
- luogu P2574 XOR的艺术 (线段树)
luogu P2574 XOR的艺术 (线段树) 算是比较简单的线段树. 当区间修改时.\(1 xor 1 = 0,0 xor 1 = 1\)所以就是区间元素个数减去以前的\(1\)的个数就是现在\( ...
- getComputedStyle与currentStyle获取元素当前的css样式
CSS的样式分为三类: 内嵌样式:是写在标签里面的,内嵌样式只对所在的标签有效内部样式:是写在HTML里面的,内部样式只对所在的网页有效外部样式表:如果很多网页需要用到同样的样式,将样式写在一个以.c ...