seq2seq模型详解

原创 2017年12月25日 09:41:04
 

在李纪为博士的毕业论文中提到,基于生成的闲聊机器人中,seq2seq是一种很常见的技术。例如,在法语-英语翻译中,预测的当前英语单词不仅取决于所有前面的已翻译的英语单词,还取决于原始的法语输入;另一个例子,对话中当前的response不仅取决于以往的response,还取决于消息的输入。其实,seq2seq最早被用于机器翻译,后来成功扩展到多种自然语言生成任务,如文本摘要和图像标题的生成。本文将介绍几种常见的seq2seq的模型原理,seq2seq的变形以及seq2seq用到的一些小trick。

我们使用x={x1,x2,…,xn}代表输入的语句,y={y1, y2, …, yn}代表输出的语句,yt代表当前输出词。在理解seq2seq的过程中,我们要牢记我们的目标是:

(1)

即输出的yt不仅依赖之前的输出{y1, y2, …, yt−1},还依赖输入语句x,模型再怎么变化都是在公式(1)的约束之下。

seq2seq最初模型

最早由bengio等人发表在computer science上的论文:Learning Phrase Representations using RNN Encoder–Decoder
for Statistical Machine Translation
。对于RNN来说,x={x1,x2,…,xt}代表输入,在每个时间步t,RNN的隐藏状态ht由公式(1)更新:

ht=f(ht−1,xt) (2)

其中,f代表一个非线性函数。这时ht就是一个rnn_size的隐含状态。然后需要通过一个矩阵W将其转成一个symbol_size的输出,并通过softmax函数将其转化为概率,然后筛选出概率最大的symbol为输出symbol。

(3)

以上是rnn的基本原理,接下来介绍论文中的seq2seq模型:

模型包括encoder和decoder两个部分。首先在encoder部分,将输入传到encoder部分,得到最后一个时间步长t的隐藏状态C,这就是RNNcell的基本功能。其次是decoder部分,从上述模型的箭头中可以看出,decoder的隐藏状态ht就由ht−1,yt−1和C三部分构成。即:

(4)

由此我们的到了decoder的隐藏状态,那么最后的输出yt从图中也可以看得出来由三部分得到,h_{t},y_{t-1}$和C,即:

(5)

到现在为止,我们就实现了我们的目标(1)。

seq2seq的改进模型

from:http://blog.csdn.net/Irving_zhang/article/details/78889364

改进模型介绍2014年发表的论文Sequence to Sequence Learning with Neural Networks。模型图:

可以看到,该模型和第一个模型主要的区别在于从输入到输出有一条完整的流:ABC为encoder的输入,WXYZ为decoder的输入。将encoder最后得到的隐藏层的状态ht输入到decoder的第一个cell里,就不用像第一个模型一样,而一个decoder的cell都需要ht,因此从整体上看,从输入到输出像是一条“线性的数据流”。本文的论文也提出来,ABC翻译为XYZ,将encoder的input变为“CBA”效果更好。即A和X的距离更近了,更有利于seq2seq模型的交流。

具体来说,encoder的过程如下图。这和我们之前的encoder都一样。

不同的是decoder的阶段:

得到了encoder
represention,即encoder的最后一个时间步长的隐层ht以后,输入到decoder的第一个cell里,然后通过一个激活函数和softmax层,得到候选的symbols,筛选出概率最大的symbol,然后作为下一个时间步长的输入,传到cell中。这样,我们就得到了我们的目标(1)。

seq2seq with attention

我们前面提到,距离decoder的第一个cell越近的输入单词,对decoder的影响越大。但这并不符合常理,这时就提出了attention机制,对于输出的每一个cell,都检测输入的sequence里每个单词的重要性,即论文NEURAL MACHINE TRANSLATION
BY JOINTLY LEARNING TO ALIGN AND TRANSLATE
。attention在NMT基于seq2seq的改进模型再进行改进,原理如下:

上图中,encoder和decoder都发生了变化。首先说encoder,使用了双向RNN,因为希望不仅能得到前向的词的顺序,还希望能够得到反向的词的顺序。使用hj→代表hj前向的隐层状态,hj←代表hj的反向隐层状态,hj的最终状态为将两者连接(concat)起来,即hj=[hj→;hj←]。

再说decoder。我们再来回顾一下我们的目标公式(1):

对于加入attention机制的seq2seq,每一个输出为公式(6)。即对于时间步i的输出yi,由时间步i的隐藏状态si,由attention计算得到的输入内容ci和上一个输出yi-1得到。

(6)

其中si是对于时间步i的隐藏状态,由公式(7)计算。即对于时间步i的隐藏状态,由时间步i-1的隐藏状态si-1,由attention计算得到的输入内容ci和上一个输出yi-1得到。

(7)

通过以上公式可以看出,加入attention的seq2seq比之前的seq2seq多了一个输入内容向量ci,那么这个ci是怎么得来的呢?和输入内容以及attention有什么关系呢?我们接着看公式(8):

(8)

即,对于decoder的时间步长i的隐藏状态si,ci等于Tx个输入向量[1,Tx]与其权重αij相乘求和。这个权重αij由公式(9)得到:

(9)

其中,eij由公式(10)得到:

(10)

总结一下,对于时间步i的隐藏状态si,可以通过求时间步i-1的隐藏状态si-1、输入内容的编码向量ci和上一个输出yi-1得到。输入内容编码ci是新加入的内容,可以通过计算输入句子中每个单词的权重,然后加权求和得到ci。直观解释这个权重:对于decoder的si和encoder的hj的权重\alpha_{ij}$,就是上一个时间步长的隐藏状态si-1与encoder的hj通过非线性函数得到的。这样就把输入内容加入到解码的过程中,这和我们人类翻译的过程也是类似的,即对于当前输出的词,每一个输入给与的注意力是不一样的。

seq2seq with beam-search

在测试阶段,decoder的过程有两种主要的解码方式。第一种方法是贪婪解码,它将在上一个时间步预测的单词feed给下一步的输入,来预测本个时间步长的最有可能的单词。

但是,如果有一个cell解码错了词,那么错误便会一直累加。所以在工程上提出了beam-search的方法。即在decoder阶段,某个cell解码时不只是选出预测概率最大的symbol,而是选出k个概率最大的词(例如k
=
5,我们称k=5为beam-size)。在下一个时间步长,对于这5个概率最大的词,可能就会有5V个symbols(V代表词表的大小)。但是,只保留这5V个symbols中最好的5个,然后不断的沿时间步长走下去。这样可以保证得到的decode的整体的结果最优。

参考文献:

(1)Learning Phrase Representations using RNN Encoder–Decoder
for Statistical Machine Translation

(2)Sequence to Sequence Learning with Neural Networks

(3)NEURAL MACHINE TRANSLATION
BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

(4)seq2seq with beam-search

(5) 从头实现一个深度学习对话系统–Seq-to-Seq模型详解

(6) seq2seq学习笔记

seq2seq里的数学的更多相关文章

  1. QDUoj GZS的三角形 棋盘里的数学 思维+杨辉三角

    1. 题目 我的提交 GZS的三角形 发布时间: 2015年9月6日 15:18   最后更新: 2016年6月26日 12:10   时间限制: 1000ms   内存限制: 256M 描述 机智无 ...

  2. codeforces#253 D - Andrey and Problem里的数学知识

    这道题是这种,给主人公一堆事件的成功概率,他仅仅想恰好成功一件. 于是,问题来了,他要选择哪些事件去做,才干使他的想法实现的概率最大. 我的第一个想法是枚举,枚举的话我想到用dfs,但是认为太麻烦. ...

  3. ZOJ Problem Set - 3593 拓展欧几里得 数学

    ZOJ Problem Set - 3593 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3593 One Person ...

  4. [ios]object-c math.h里的数学计算公式介绍

    参考:http://blog.csdn.net/yuhuangc/article/details/7639117 头文件:<math.h> 1. 三角函数  double sin (dou ...

  5. 用Lua扩展谷歌拼音输入法

    谷歌拼音输入法最后一次更新是2013年,最近2年毫无动静,这个产品应该已经停了,不过这并不影响对它的使用,我一直喜欢它的简洁和稳定. 说不上来什么原因,忽然想起了摆弄摆弄谷歌拼音输入法的扩展特性(我经 ...

  6. 转自一个CG大神的文章

    <如何学好游戏3D引擎编程>此篇文章献给那些为了游戏编程不怕困难的热血青年,它的神秘要我永远不间断的去挑战自我,超越自我,这样才能攀登到游戏技术的最高峰           ——阿哲VS自 ...

  7. 转载:[转]如何学好3D游戏引擎编程

      [转]如何学好3D游戏引擎编程 Albert 本帖被 gamengines 从 游戏引擎(Game Engine) 此文为转载,但是值得一看. 此篇文章献给那些为了游戏编程不怕困难的热血青年,它的 ...

  8. 把《c++ primer》读薄(1-2前言+变量和基本类型)

    督促读书,总结精华,提炼笔记,抛砖引玉,有不合适的地方,欢迎留言指正. 一:大小端的概念 Big-Endian和Little-Endian(见计算机存储的大小端模式解析) 二:浮点数的机器级表示 (见 ...

  9. [No00005F]读书与心智

    读千卷书,行万里路,不够…还得有个对谈者相伴,才更有意思.十月七号晚上,与友人谈读书,线上直播,三百观众相伴,四小时畅谈,不亦乐乎! Part1:读书的载体 散发出最浓郁的知识芬芳和铭刻下最隽永的历史 ...

随机推荐

  1. telnet mysql3306端口失败

    在linux上telnet远程mysql端口失败,经过上网查找后,找到多种方法. (1)我在本地的Navicat上新增了一个用户,主机名是linux的ip,也可以是 %(百分号代表这个用户可以在任何地 ...

  2. C++11 Thread多线程的学习心得与问题

    C++11 ,封装了thread的多线程的类,这样对多线程的使用更加方便. 多线程的原理我不加赘述,可以参看操作系统等参考书. 多线程代码可以最大化利用计算机性能资源,提高代码的运行效率,是常用优化方 ...

  3. 洛谷——P4296 [AHOI2007]密码箱

    P4296 [AHOI2007]密码箱 密码x大于等于0,且小于n,而x的平方除以n,得到的余数为1. 求这个密码,$1<=n<=2,000,000,000$ 暴力枚举,数据有点儿水$O( ...

  4. Yii 时间日期组件与composer 下载中出现的问题

    首先本篇主要讲3点 一个Yii时间日期组件的两种用法 笔者使用composer下载该组件时出现问题的解决办法 1.composer下载出现的问题 file could not be downloade ...

  5. buf.readUInt32BE()函数详解

    buf.readUInt32BE(offset[, noAssert]) buf.readUInt32LE(offset[, noAssert]) offset {Number} 0 noAssert ...

  6. 浅谈微信小程序对于房地产行业的影响

    前几日,我们曾经整理过一篇文章是关于微信小程序对于在线旅游业的影响的一些反思(浅谈微信小程序对OTA在线旅游市场的影响),近日由于生活工作的需要走访了一些房地产的住宅商品房,突然想到微信小程序对于房地 ...

  7. Jmeter逻辑控制器-ForEach Controller

    ForEach Controller 介绍 ForEach Contoller 即循环控制器,顾名思义是定义一个规则.主要有以下一个参数: 名称:随便填写 注释:随便填写 输入变量前缀:可以在&quo ...

  8. vue中axios设置

    //设置默认全局baseURL axios.defaults.baseURL=process.env.BASE_API; //设置默认全局携带浏览器cookie axios.defaults.with ...

  9. 【DIP, 图像增强】

    第四章 图像增强 图像增强是按特定的需要突出一幅图像中的某些信息,同时削弱或者去除某些不需要的信息的处理方法.其主要目的是使处理后的图像对某种特定的应用来说,比原始图像更加适用.因此这类处理是为了某种 ...

  10. linux 简单实用小操作

    mysql改密码 通过root以后,(root密码忘记就没法了) alter user username@'%' identified by 'password' 端口被占用 sudo fuser - ...