CodeForces 24D Broken robot

大致题意:你有一个n行m列的矩形板,有一个机器人在开始在第i行第j列,它每一步会随机从可以选择的方案里任选一个(向下走一格,向左走一格,向右走一格,留在原地),现在我们要求它走到最后一行的期望步数



$ solution: $

这道题我们可以从最后一行开始递推(这是一个期望DP的惯用套路,因为只有最后的期望我们可以得出是1或者0,前面的都是未知的),但是我们很快发现会有一些难以解决的方程。因为每一行的每一个格子都可以组成一个方程,但是这些格子都是未知的,只有他们的下一行的所有格子已知(我们从下向上倒推)。也就是说这一行格子会组成m个两两相关联的线性方程组。我们知道解方程组可以用高斯消元,但是高斯消元的复杂度为三方的。博主困在这里了好久,最后看书才发现原来自己这么笨。众所周知的,高斯消元的优化有很多种,我们要好好的利用其性质。而这一题的方程组每一个格子的期望都只和他左边和右边的格子的期望有关联,所以我们的系数矩阵很多都是0,这些我们都不用计算。我们只需要消掉左边一个和右边一个就可以了。这样高斯消元的实际复杂度就变成了 $ O(m) $ (具体看代码)然后我们就可以过这道题了。



$ code: $

#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cstdlib> #define ll long long
#define db double
#define rg register int using namespace std; int n,m,sx,sy;
db f[1005][1005];
db s[1005][1005]; inline int qr(){
char ch;
while((ch=getchar())<'0'||ch>'9');
int res=ch^48;
while((ch=getchar())>='0'&&ch<='9')
res=res*10+(ch^48);
return res;
} int main(){
n=qr(); m=qr();
sx=qr(),sy=qr();
if(m==1){
printf("%.10lf\n",(db)2*(n-sx));
return 0;
}
for(rg i=n-1;i>=sx;--i){
s[1][1]=s[m][m]=(db)2/3;
s[m][m+1]=f[i+1][m]/3+1;
s[1][2]=s[m][m-1]=-(db)1/3;
s[1][m+1]=f[i+1][1]/3+1;
for(rg j=2;j<m;++j){
s[j][j]=(db)3/4;
s[j][m+1]=f[i+1][j]/4+1;
s[j][j-1]=s[j][j+1]=-(db)1/4;
}
for(rg j=1;j<m;++j){
db x=s[j+1][j]/s[j][j];
s[j+1][j+1]-=s[j][j+1]*x;
s[j+1][m+1]-=s[j][m+1]*x;
}
for(rg j=m;j>1;--j){
db x=s[j-1][j]/s[j][j];
s[j-1][m+1]-=s[j][m+1]*x;
}
for(rg j=1;j<=m;++j)
f[i][j]=s[j][m+1]/s[j][j];
}
printf("%.10lf\n",f[sx][sy]);
return 0;
}

CodeForces 24D Broken robot(期望+高斯消元)的更多相关文章

  1. codeforces 24d Broken robot 期望+高斯消元

    题目传送门 题意:在n*m的网格上,有一个机器人从(x,y)出发,每次等概率的向右.向左.向下走一步或者留在原地,在最左边时不能向右走,最右边时不能像左走.问走到最后一行的期望. 思路:显然倒着算期望 ...

  2. Codeforces.24D.Broken robot(期望DP 高斯消元)

    题目链接 可能这儿的会更易懂一些(表示不想再多写了). 令\(f[i][j]\)表示从\((i,j)\)到达最后一行的期望步数.那么有\(f[n][j]=0\). 若\(m=1\),答案是\(2(n- ...

  3. $CF24D\ Broken Robot\ DP+$高斯消元

    Luogu Description 你收到的礼物是一个非常聪明的机器人,行走在一块长方形的木板上.不幸的是,你知道它是坏的,表现得相当奇怪(随机).该板由n行和m列的单元格组成.机器人最初是在i行和j ...

  4. 【BZOJ】3143: [Hnoi2013]游走 期望+高斯消元

    [题意]给定n个点m条边的无向连通图,每条路径的代价是其编号大小,每个点等概率往周围走,要求给所有边编号,使得从1到n的期望总分最小(求该总分).n<=500. [算法]期望+高斯消元 [题解] ...

  5. 【BZOJ】2337: [HNOI2011]XOR和路径 期望+高斯消元

    [题意]给定n个点m条边的带边权无向连通图(有重边和自环),在每个点随机向周围走一步,求1到n的期望路径异或值.n<=100,wi<=10^9. [算法]期望+高斯消元 [题解]首先异或不 ...

  6. [BZOJ3143][HNOI2013]游走(期望+高斯消元)

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3576  Solved: 1608[Submit][Status ...

  7. CodeForces 24D Broken Robot

    题意:n*m的棋盘,一个机器人在(i,j)处,每次等概率地停在原地,向左移动一格,向右移动一格,向下移动一格(不能移出棋盘).求走到最后一行所需期望步数.n<=1000,m<=1000 一 ...

  8. 【BZOJ 3143】【Hnoi2013】游走 期望+高斯消元

    如果纯模拟,就会死循环,而随着循环每个点的期望会逼近一个值,高斯消元就通过列方正组求出这个值. #include<cstdio> #include<cctype> #inclu ...

  9. Codeforces Gym10008E Harmonious Matrices(高斯消元)

    [题目链接] http://codeforces.com/gym/100008/ [题目大意] 给出 一个n*m的矩阵,要求用0和1填满,使得每个位置和周围四格相加为偶数,要求1的数目尽量多. [题解 ...

随机推荐

  1. properties类的基本使用方法

    properties类的基本使用方法1.假设有“pp.properties”,内容有       age=22       2.java中用下面方法:   Properties   props   = ...

  2. HDU 5667 Sequence【矩阵快速幂+费马小定理】

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5667 题意: Lcomyn 是个很厉害的选手,除了喜欢写17kb+的代码题,偶尔还会写数学题.他找到 ...

  3. (5)ASP.NET Core 中的静态文件

    1.前言 当我们创建Core项目的时候,Web根目录下会有个wwwroot文件目录,wwwroot文件目录里面默认有HTML.CSS.IMG.JavaScript等文件,而这些文件都是Core提供给客 ...

  4. MySql的架构和历史

    1.1.mysql的逻辑架构 架构为如下: 存储引擎:负责数据的储存和提取,供了几十个API供服务层进行调用.各个存储引擎之间不会进行交互,只是供服务层进行调用.事务控制和锁的管理也是在存储引擎里面进 ...

  5. ROS下使用ASUS Xtion Pro Live

    一.ROS官网hydro版本OpenNI安装 3. Installation 3.1 Ubuntu installation To install only openni_camera: sudo a ...

  6. nginx源码学习资源(不断更新)转

    原文地址:http://www.cnblogs.com/yjf512/archive/2012/06/13/2548515.html nginx源码学习是一个痛苦又快乐的过程,下面列出了一些nginx ...

  7. [NOIP2012T3]开车旅行

    题目描述 NOIP 2012 提高组 题3小 A 和小 B 决定利用假期外出旅行,他们将想去的城市从 1 到 N 编号,且编号较小的城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市 ...

  8. 浅谈Java字符串

    从概念上而言,Java字符串就是Unicode字符序列.由于Java没有内置的字符串类型,而是在标准Java类库中提供了一个预定义类String,每个用双引号的括起来的字符串都是String类的一个实 ...

  9. springboot jetty替换tomcat

    <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring- ...

  10. iOS APP 的生命周期

    1.在手机桌面上点击APP图标 - (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDi ...