题目链接:https://vjudge.net/problem/POJ-1087

A Plug for UNIX
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 17861   Accepted: 6172

Description

You are in charge of setting up the press room for the inaugural meeting of the United Nations Internet eXecutive (UNIX), which has an international mandate to make the free flow of information and ideas on the Internet as cumbersome and bureaucratic as possible. 
Since the room was designed to accommodate reporters and journalists from around the world, it is equipped with electrical receptacles to suit the different shapes of plugs and voltages used by appliances in all of the countries that existed when the room was built. Unfortunately, the room was built many years ago when reporters used very few electric and electronic devices and is equipped with only one receptacle of each type. These days, like everyone else, reporters require many such devices to do their jobs: laptops, cell phones, tape recorders, pagers, coffee pots, microwave ovens, blow dryers, curling 
irons, tooth brushes, etc. Naturally, many of these devices can operate on batteries, but since the meeting is likely to be long and tedious, you want to be able to plug in as many as you can. 
Before the meeting begins, you gather up all the devices that the reporters would like to use, and attempt to set them up. You notice that some of the devices use plugs for which there is no receptacle. You wonder if these devices are from countries that didn't exist when the room was built. For some receptacles, there are several devices that use the corresponding plug. For other receptacles, there are no devices that use the corresponding plug. 
In order to try to solve the problem you visit a nearby parts supply store. The store sells adapters that allow one type of plug to be used in a different type of outlet. Moreover, adapters are allowed to be plugged into other adapters. The store does not have adapters for all possible combinations of plugs and receptacles, but there is essentially an unlimited supply of the ones they do have.

Input

The input will consist of one case. The first line contains a single positive integer n (1 <= n <= 100) indicating the number of receptacles in the room. The next n lines list the receptacle types found in the room. Each receptacle type consists of a string of at most 24 alphanumeric characters. The next line contains a single positive integer m (1 <= m <= 100) indicating the number of devices you would like to plug in. Each of the next m lines lists the name of a device followed by the type of plug it uses (which is identical to the type of receptacle it requires). A device name is a string of at most 24 alphanumeric 
characters. No two devices will have exactly the same name. The plug type is separated from the device name by a space. The next line contains a single positive integer k (1 <= k <= 100) indicating the number of different varieties of adapters that are available. Each of the next k lines describes a variety of adapter, giving the type of receptacle provided by the adapter, followed by a space, followed by the type of plug.

Output

A line containing a single non-negative integer indicating the smallest number of devices that cannot be plugged in.

Sample Input

4
A
B
C
D
5
laptop B
phone C
pager B
clock B
comb X
3
B X
X A
X D

Sample Output

1

Source

题意:

有n个不同类型的插孔,m个需要充电的用电器,k种适配器,且每种适配器有无限个,适配器之间可以互相拼接(双向)。问:怎样安排,才能使得尽量多的用电器能充上电?

题解:

最大流问题。可知对于一个用电器,他要充电有两种方式,一种是直接将插头插到插孔上去,一种是通过适配器将插头与插孔相连。

1.建立超级源点,超级源点与每个用电器相连,且边的容量为1,表明这种用电器只有一台。

2.由于适配器之间可以互相拼接,所以对于每一对能够拼接的适配器,连上一条边,且这条边是双向的,容量为INF,因为题目说明了每种适配器都有无限个,所以这种搭配也有无限个。

3.用电器与插孔相连,以及用电器与适配器相连,且边的容量都为1,表示这种用电器只有一台。

4.适配器与插孔相连,且边的容量为INF,因为适配器有无限个。

5.建立超级汇点,且每个插孔与超级汇点相连,边的容量为1,表明只有一个插孔。

6.求最大流即可。

思考:

若每种适配器只有一个呢?

把每个适配器拆成两点,且内部连一条边,容量为1,使得流经这种适配器的流量限制在1之内,然后把INF都改成1。推广:如果限制了只有m个,那么边的容量就设置为m。

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int MAXN = 3e2+; int maze[MAXN][MAXN];
int gap[MAXN], dis[MAXN], pre[MAXN], cur[MAXN];
int flow[MAXN][MAXN]; int sap(int start, int end, int nodenum)
{
memset(cur, , sizeof(cur));
memset(dis, , sizeof(dis));
memset(gap, , sizeof(gap));
memset(flow, , sizeof(flow));
int u = pre[start] = start, maxflow = , aug = INF;
gap[] = nodenum; while(dis[start]<nodenum)
{
loop:
for(int v = cur[u]; v<nodenum; v++)
if(maze[u][v]-flow[u][v]> && dis[u] == dis[v]+)
{
aug = min(aug, maze[u][v]-flow[u][v]);
pre[v] = u;
u = cur[u] = v;
if(v==end)
{
maxflow += aug;
for(u = pre[u]; v!=start; v = u, u = pre[u])
{
flow[u][v] += aug;
flow[v][u] -= aug;
}
aug = INF;
}
goto loop;
} int mindis = nodenum-;
for(int v = ; v<nodenum; v++)
if(maze[u][v]-flow[u][v]> && mindis>dis[v])
{
cur[u] = v;
mindis = dis[v];
}
if((--gap[dis[u]])==) break;
gap[dis[u]=mindis+]++;
u = pre[u];
}
return maxflow;
} /* 建图模式: —— —— —— —— —— ——
| |
超级源点-->device-->adapter-->plug-->超级汇点
| |
--
*/
char plug[MAXN][], dev[MAXN][][], ada[MAXN][][];
int main()
{
int n, m, k;
scanf("%d", &n);
for(int i = ; i<=n; i++) scanf("%s", plug[i]);
scanf("%d", &m);
for(int i = ; i<=m; i++) scanf("%s%s", dev[i][], dev[i][]);
scanf("%d",&k);
for(int i = ; i<=k; i++) scanf("%s%s", ada[i][], ada[i][]); memset(maze, , sizeof(maze));
for(int i = ; i<=m; i++) //dev-->plug
for(int j = ; j<=n; j++)
{
if(!strcmp(dev[i][],plug[j])) maze[n+i][j] = ;
}
for(int i = ; i<=k; i++) //ada-->ada
for(int j = ; j<=k; j++)
{
if(i==j) continue;
if(!strcmp(ada[i][],ada[j][])) maze[n+m+i][n+m+j] = INF;
if(!strcmp(ada[j][],ada[i][])) maze[n+m+j][n+m+i] = INF;
}
for(int i = ; i<=m; i++) //dev-->ada
for(int j = ; j<=k; j++)
{
if(!strcmp(dev[i][],ada[j][])) maze[n+i][n+m+j] = ;
if(!strcmp(dev[i][],ada[j][])) maze[n+i][n+m+j] = ;
}
for(int i = ; i<=k; i++) //ada--plug
for(int j = ; j<=n; j++)
{
if(!strcmp(ada[i][],plug[j])) maze[n+m+i][j] = INF;
if(!strcmp(ada[i][],plug[j])) maze[n+m+i][j] = INF;
} int start = , end = n+m+k+;
for(int i = ; i<=m; i++) maze[start][n+i] = ; //超级源点-->dev
for(int i = ; i<=n; i++) maze[i][end] = ; //plug-->超级汇点 cout<< m-sap(start, end, n+m+k+) <<endl;
}

POJ1087 A Plug for UNIX —— 最大流的更多相关文章

  1. POJ1087:A Plug for UNIX(最大流)

    A Plug for UNIX 题目链接:https://vjudge.net/problem/POJ-1087 Description: You are in charge of setting u ...

  2. 【poj1087/uva753】A Plug for UNIX(最大流)

    A Plug for UNIX   Description You are in charge of setting up the press room for the inaugural meeti ...

  3. POJ1087 A Plug for UNIX 【最大流】

    A Plug for UNIX Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13855   Accepted: 4635 ...

  4. POJ1087 A Plug for UNIX(网络流)

                                       A Plug for UNIX Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  5. POJ1087 A Plug for UNIX 2017-02-12 13:38 40人阅读 评论(0) 收藏

    A Plug for UNIX Description You are in charge of setting up the press room for the inaugural meeting ...

  6. poj1087 A Plug for UNIX(网络流最大流)

    http://poj.org/problem?id=1087 好久没遇见过这么坑的题了这个题真是挫的够可以的.题目大意:你作为某高管去住宿了,然后宾馆里有几种插座,分别有其对应型号,你携带了几种用电器 ...

  7. poj1087 A Plug for UNIX & poj1459 Power Network (最大流)

    读题比做题难系列…… poj1087 输入n,代表插座个数,接下来分别输入n个插座,字母表示.把插座看做最大流源点,连接到一个点做最大源点,流量为1. 输入m,代表电器个数,接下来分别输入m个电器,字 ...

  8. 【uva753/poj1087/hdu1526-A Plug for UNIX】最大流

    题意:给定n个插座,m个插头,k个转换器(x,y),转换器可以让插头x转成插头y.问最少有多少个插头被剩下. 题解: 最大流或者二分图匹配.然而我不知道怎么打二分图匹配..打了最大流.这题字符串比较坑 ...

  9. ZOJ1157, POJ1087,UVA 753 A Plug for UNIX (最大流)

    链接 : http://acm.hust.edu.cn/vjudge/problem/viewProblem.action? id=26746 题目意思有点儿难描写叙述 用一个别人描写叙述好的. 我的 ...

随机推荐

  1. 洛谷 [P3834] 可持久化线段树(主席树)

    主席树可以存储线段树的历史状态,空间消耗很大,一般开45n即可 #include <iostream> #include <cstdio> #include <cstri ...

  2. 洛谷 [T21776] 子序列

    题目描述 你有一个长度为 \(n\) 的数列 \(\{a_n\}\) ,这个数列由 \(0,1\) 组成,进行 \(m\) 个的操作: \(1\ l\ r\) :把数列区间$ [l,r]$ 内的所有数 ...

  3. h5表单验证的css和js方法

    1.css3 提示只适用于高级浏览器: Chrome,Firefox,Safari,IE9+ valid.invalid.required的定义 代码如下: input:required, input ...

  4. MySQL的LOOP, LEAVE 和ITERATE语句(类似Continue、Break的写法)

    和REPEAT和while语句不同,LOOP.LEAVE.ITERATE更像其他编程语言中的goto语句. LOOP要设定一个label指定循环的开始位置,而LEAVE则像其他语言中的Break会离开 ...

  5. luogu P1342 请柬

    题目描述 在电视时代,没有多少人观看戏剧表演.Malidinesia古董喜剧演员意识到这一事实,他们想宣传剧院,尤其是古色古香的喜剧片.他们已经打印请帖和所有必要的信息和计划.许多学生被雇来分发这些请 ...

  6. [ZJOI 2018] 线图

    别想多了我怎么可能会正解呢2333,我只会30分暴力(好像现场拿30分已经不算少了2333,虽然我局的30分不是特别难想). 首先求k次转化的点数显然可以变成求k-1次转化之后的边数,所以我们可以先让 ...

  7. Eclipse编译无响应

    Eclipse编译无响应 Eclipse进程无响应结束进程后,或电脑直接断电后,重新打开Eclipse偶尔重新编译会卡进度,下面有一种解决方案: 首先找到卡进度的工程的名字,关闭Eclipse,找到该 ...

  8. the import org.springframewok.test cannot be resolved

    在写Spring的单元测试时遇见了问题,注解@ContextConfiguration和SpringJUnit4ClassRunner.class无法导包.手动导包后错误为“the import or ...

  9. php执行超时(nginx,linux环境)

    与下面的参数有关 nginx: fastcgi_connect_timeout fastcgi_read_timeout fastcgi_send_timeout php-fpm:request_te ...

  10. 【mac】mac上安装软件,报错 鉴定错误,但是安装包都是好的

    出现这个问题, 原因解析: 不是你的安装包下载出错了或者下载失败了这种原因 而是你在打开这个安装包的时候,一定是让你输入密码,而你的密码没有输入正确 解决方式:重新开始打开这个软件的安装包 如下: 1 ...