题目链接:http://poj.org/problem?id=1195

题目意思:有一部 mobie phone 基站,它的面积被分成一个个小正方形(1 * 1 的大小),所有的小正方形的面积构成了一个 S * S 大小的矩阵(下标都是从 0 ~ S-1 变化的)。

  有四种指令:

  第 一 行的指令默认输入是 0, 空格之后是矩阵的大小: S

最后一行的指令是 3, 代表 整个输入结束

注意:这两行的指令只会出现一次!

夹在它们中间的指令有可能是指令1,假设为X Y A,代表向第 X 行 第 Y 列的那个小正方形加上A (可正可负),不需要输出结果。 又或者是指令2,假设为 L B R T,代表要计算出 行 L ~ R,列 B ~ T 所围住的矩形的和,这个指令要求输出这个和。

看了很久,终于看明白题目了,表示英文太差,经常看不懂POJ 的英文题 = =。

二维树状数组,有了前一天二维树状数组探索版的积累,套了下模板。不过询问那里,也就是指令 2 的输出有点问题,今天终于改好了,happy ^_^ ....

首先要知道二维树状数组这个模板的 Sum 究竟算出来的是什么:假如调用的是Sum(i, j)啦,那么它求出的是从最左上角的坐标到坐标 (i, j) 所围的面积的和!!! 那么如果要求特定的某个子矩阵的面积(例如 (2, 3) ~ (3,4)),就需要减去相应不需要的部分啦。

数字4 是我们要求的部分,如果单纯调用Sum(3, 4) 的话,得出的是编号 1 的和,那么我们需要减去2和3的和,才能得出4的和,而要得出2的和,也需要减去[A11 + A12]这个矩阵的和啦,也就是Sum(3, 2) - Sum(1, 2),对应代码中的 Sum(R+1, B)-Sum(L, B)。而编号 3 的和对应代码: Sum(L, T+1)。

(之前错误地写成Sum(3, 4)- Sum(2, 3) 了, = =,粗心呀~~~,读者请忽略)

还有一个值得注意的地方是,树状数组下标是从1开始的,而题目坐标是从0开始的,所以不妨相应地向右下角移动一位,就是说,假设输入的是0 0,那么就看成是1 1 (这个是受hdu 1541 的 Stars 启发啦)

 #include <iostream>
#include <cstdio>
#include <cstring>
using namespace std; const int maxn = + ;
int A[maxn][maxn];
int C[maxn][maxn];
int size; int lowbit(int x)
{
return x & (-x);
} int Sum(int i, int j)
{
int result = ;
for (int x = i; x > ; x -= lowbit(x))
{
for (int y = j; y > ; y -= lowbit(y))
result += C[x][y];
}
return result;
} void Modify(int i, int j, int delta)
{
A[i][j] += delta; for (int x = i; x < size+; x += lowbit(x))
{
for (int y = j; y < size+; y += lowbit(y))
C[x][y] += delta;
}
} int main()
{
int x, y, ask, num, L, B, R, T;
memset(A, , sizeof(A));
memset(C, , sizeof(C));
while (scanf("%d", &ask) != EOF && ask != )
{
if (ask == )
scanf("%d", &size);
else if (ask == )
{
scanf("%d%d%d", &x, &y, &num);
Modify(x+, y+, num);
}
else if (ask == )
{
scanf("%d%d%d%d", &L, &B, &R, &T);
printf("%d\n", Sum(R+, T+)-(Sum(R+, B)-Sum(L, B))- Sum(L, T+)); // 对应图中的1-2-3
}
}
return ;
}

poj 1195 Mobile phones 解题报告的更多相关文章

  1. poj 1195:Mobile phones(二维树状数组,矩阵求和)

    Mobile phones Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 14489   Accepted: 6735 De ...

  2. poj 1195:Mobile phones(二维线段树,矩阵求和)

    Mobile phones Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 14391   Accepted: 6685 De ...

  3. 题解报告:poj 1195 Mobile phones(二维BIT裸题)

    Description Suppose that the fourth generation mobile phone base stations in the Tampere area operat ...

  4. (简单) POJ 1195 Mobile phones,二维树状数组。

    Description Suppose that the fourth generation mobile phone base stations in the Tampere area operat ...

  5. POJ 1195 Mobile phones(二维树状数组)

                                                                  Mobile phones Time Limit: 5000MS   Mem ...

  6. POJ 1195 Mobile phones (二维树状数组)

    Description Suppose that the fourth generation mobile phone base stations in the Tampere area operat ...

  7. poj 1195 Mobile phones(二维树状数组)

    树状数组支持两种操作: Add(x, d)操作:   让a[x]增加d. Query(L,R): 计算 a[L]+a[L+1]……a[R]. 当要频繁的对数组元素进行修改,同时又要频繁的查询数组内任一 ...

  8. ●POJ 1195 Mobile phones

    题链: http://poj.org/problem?id=1195 题解: 二维树状数组 #include<cstdio> #include<cstring> #includ ...

  9. POJ 1195 Mobile phones【二维树状数组】

    <题目链接> 题目大意: 一个由数字构成的大矩阵,开始是全0,能进行两种操作1) 对矩阵里的某个数加上一个整数(可正可负)2) 查询某个子矩阵里所有数字的和要求对每次查询,输出结果 解题分 ...

随机推荐

  1. 看 nova

    本节重点介绍 nova-scheduler 的调度机制和实现方法:即解决如何选择在哪个计算节点上启动 instance 的问题. 创建 Instance 时,用户会提出资源需求,例如 CPU.内存.磁 ...

  2. POJ 1502 MPI Maelstrom [最短路 Dijkstra]

    传送门 MPI Maelstrom Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5711   Accepted: 3552 ...

  3. android实现通知栏消息

    一.原理 消息推送有两种,一种是客户端定时直接到服务器搜索消息,如果发现有新的消息,就获取消息下来:另一种是服务器向客户端发送消息,也就是当有信息消息时,服务器端就会向客户端发送消息. 二.步骤(代码 ...

  4. 什么是Hadoop?什么是HDFS?

    [学习笔记] 什么是Hadoop?什么是HDFS?马 克-to-win @ 马克java社区:Hadoop是Apache基金会开发的一个分布式系统基础架构.比如前面我们接触的Spring就是一个开发应 ...

  5. 《深入理解mybatis原理》 Mybatis初始化机制详解

    对于任何框架而言,在使用前都要进行一系列的初始化,MyBatis也不例外.本章将通过以下几点详细介绍MyBatis的初始化过程. 1.MyBatis的初始化做了什么 2. MyBatis基于XML配置 ...

  6. bash 文件头尾插入字符

    头部插入:sed -i '1i\Insert this line' file.txt 尾部插入:echo "hehe"  >> tmp.txt

  7. 仿htc sense的弹性listView!

    demo下载:http://pan.baidu.com/s/1ntoICdV 前一段时间换了htc m7之后,对htc的sense ui有不错的印象.特别是它的listview十分有个性.提供弹性的o ...

  8. 【转】DevOps原则

    DevOps的出现有其必然性.在软件开发生命周期中,遇到了两次瓶颈. 第一次瓶颈是在需求阶段和开发阶段之间,针对不断变化的需求,对软件开发者提出了高要求,后来出现了敏捷方法论,强调适应需求.快速迭代. ...

  9. C#不用union,而是有更好的方式实现 .net自定义错误页面实现 .net自定义错误页面实现升级篇 .net捕捉全局未处理异常的3种方式 一款很不错的FLASH时种插件 关于c#中委托使用小结 WEB网站常见受攻击方式及解决办法 判断URL是否存在 提升高并发量服务器性能解决思路

    C#不用union,而是有更好的方式实现   用过C/C++的人都知道有个union,特别好用,似乎char数组到short,int,float等的转换无所不能,也确实是能,并且用起来十分方便.那C# ...

  10. Matlab依据样本随机数求概率曲线

    相关Matlab函数:hist, bar, cdfplot, ksdensity (1) hist函数 n = hist(Y, x)  假设x是一个向量,返回x的长度个以x为中心的,Y的分布情况. 比 ...