Mathison and the Pokémon fights code

这是一道比较有意思,出的也非常好的题目。

给定$n$个平面上的点$(x_i, y_i)$,(允许离线地)维护$Q$个操作:
1.  0 $p$ $x$ $y$ 更改第$p$个点为$(x, y)$。
2.  1 $l$ $r$ $x$ $y$ 求第l个到第r个点与$(x, y)$之间的Chebyshev距离之和,即
$$ \sum_{i=l}^r \max\{|x_i-x|, |y_i-y|\}. $$

分析:

Chebyshev距离可以通过变换

$$(x, y) \mapsto (x+y, x-y)$$

转化为Manhattan距离,即 $(x_1, y_1)$与$(x_2, y_2)$的Chebyshev距离 等于 $(x_1+y_1, x_1-y_1)$与$(x_2+y_2, x_2-y_2)$的Manhattan距离的一半(因为变换的时候坐标放大了一倍)。

经过这个变换之后,x坐标和y坐标就相互独立了,因为两个点$(x_1, y_1)$与$(x_2, y_2)$的Manhattan距离为$|x_1-x_2|+|y_1-y_2|$。

于是转换成了一个更简单的题目:

给定一个长度为$n$的序列$a_i$,(允许离线地)维护$Q$个操作:
1. 0 $p$ $x$ 更改$a_p$为$x$。
2. 1 $l$ $r$ $x$ 求$\sum_{i=l}^r |x-x_i|$。

这题有很多种做法,官方题解的复杂度是$O(n \sqrt n \log n)$,不尽如人意。

我在比赛时成为了全场最快的解法,总时间18.65s,最大点1.16s,大概比速度第二快的(总时间大约30+s)快一倍。

解法是离线的cdq分治+树状数组。

把每个操作分成两个操作:
1. 0 $p$ $x$ 认为是 ①在平面上删除$(p, x_p)$,②在平面上插入$(p, x)$。
2. 1 $l$ $r$ $x$ 认为是 ①求$1\dots r$之和,②求$1\dots l$之和。

这样可以通过cdq维护二维偏序来解决这个问题。

时间复杂度$O((n+Q) \log^2(n+Q))$。

Hackerearth: Mathison and the Pokémon fights的更多相关文章

  1. 2017"百度之星"程序设计大赛 - 复赛1003&&HDU 6146 Pokémon GO【数学,递推,dp】

    Pokémon GO Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  2. Pokémon Go呼应设计:让全世界玩家疯狂沉迷

    引言:什么样的呼应设计会让移动游戏玩家沉迷?那必须为玩家构建一个属于玩家本人或者被玩家认可的虚拟环境,或者说是被玩家认可的虚拟世界.在移动游戏时代,想要做到这一点并不容易.但Pokémon Go却做到 ...

  3. 【HDU-6146】Pokémon GO(dp)

    百度之星2017复赛1003 HDU-6146 Pokémon GO 题意 两行n列,只能到相邻格子,可以斜着.求遍历的方案数. 题解 dp[i]从一个点出发遍历长度i最后回到这一列的方案数 dp2[ ...

  4. 【CF625E】Frog Fights(模拟)

    [CF625E]Frog Fights(模拟) 题面 CF 洛谷 翻译: 有\(n\)只青蛙在一个被分为了\(m\)等分的圆上,对于每份顺时针依次标号. 初始时每只青蛙所在的位置是\(p_i\),速度 ...

  5. Magisk+Xposed+Root switch+Pokémon GO

    If you follow Android Police, there's a good chance you've got a rooted device, whether it be an eas ...

  6. Codeforces Round #342 (Div. 2) E. Frog Fights set 模拟

    E. Frog Fights 题目连接: http://www.codeforces.com/contest/625/problem/E Description stap Bender recentl ...

  7. hdu 6146 Pokémon GO (计数)

    Problem Description 众所周知,度度熊最近沉迷于 Pokémon GO. 今天它决定要抓住所有的精灵球!为了不让度度熊失望,精灵球已经被事先放置在一个2*N的格子上,每一个格子上都有 ...

  8. C2. Pokémon Army (hard version) 解析(思維)

    Codeforce 1420 C2. Pokémon Army (hard version) 解析(思維) 今天我們來看看CF1420C2 題目連結 題目 略,請直接看原題. 前言 根本想不到這個等價 ...

  9. C1. Pokémon Army (easy version) 解析(DP)

    Codeforce 1420 C1. Pokémon Army (easy version) 解析(DP) 今天我們來看看CF1420C1 題目連結 題目 對於一個數列\(a\),選若干個數字,求al ...

随机推荐

  1. BeagleBone Black Industrial系统更新设置一贴通

    前言 原创文章,转载引用务必注明链接.水平有限,欢迎指正. 本文使用markdown写成,为获得更好的阅读体验,推荐访问我的博客原文: http://www.omoikane.cn/2016/09/1 ...

  2. 安装 python 的 pip install fabric 库 问题

    安装 pip install fabric 安装依赖需要 gcc 并且不能单独的安装gcc 还要安装完整的gcc依赖 yum -y install gcc gcc-c++ kernel-devel y ...

  3. LeanCloud SDK 中秒杀70%问题的调试方法

    非常多同学在LeanCloud上遇到的不少问题,事实上能够自我解决的,如今介绍一下LeanCloud上的调试方法. LeanCloud 是通过 REST API来进行前后端分离的.这意味着当出现故障的 ...

  4. [java][db]JAVA分布式事务原理及应用

    JTA(Java Transaction API)同意应用程序运行分布式事务处理--在两个或多个网络计算机资源上訪问而且更新数据.JDBC驱动程序的JTA支持极大地增强了数据訪问能力.  本文的目的是 ...

  5. GitHub 上值得关注的 iOS 开源项目

    GitHub 上值得关注的 iOS 开源项目 原文链接:http://www.jianshu.com/p/e5dfe1a09611 GitHub 上值得关注的 iOS 开源项目 —— 由 红旗下的蛋  ...

  6. 自己定义msi安装包的运行过程

    有时候我们须要在程序中运行还有一个程序的安装.这就须要我们去自己定义msi安装包的运行过程. 比方我要做一个安装管理程序,能够依据用户的选择安装不同的子产品.当用户选择了三个产品时,假设分别显示这三个 ...

  7. 服务器返回JSON,IE出现下载问题

    我向来的观点,IE就是个奇葩. 服务器返回json,chrome处理得好地地,但IE却奇葩地向你请求是否要保存这个JSON文件? 之所以出现这种弱智现象,是因为IE无法识别一个所谓的响应头部:appl ...

  8. POJ 1703 Find them, Catch them(种类并查集)

    题目链接 这种类型的题目以前见过,今天第一次写,具体过程,还要慢慢理解. #include <cstring> #include <cstdio> #include <s ...

  9. 关于npm的环境变量配置、prefix

    1.关于npm 的 prefix 在npm中安装全局文件时,npm会把他安装在npm里面配置的prefix路径下,查看prefix的方法是:npm config list/npm config ls/ ...

  10. var和let的区别(详解)

    1. 作用域 通过var定义的变量,作用域是整个封闭函数,是全域的 . 通过let定义的变量,作用域是在块级或是子块中. function varTest() { var x = 1; if (tru ...