4517: [Sdoi2016]排列计数

Time Limit: 60 Sec  Memory Limit: 128 MB
Submit: 1792  Solved: 1111
[Submit][Status][Discuss]

Description

求有多少种长度为 n 的序列 A,满足以下条件:
1 ~ n 这 n 个数在序列中各出现了一次
若第 i 个数 A[i] 的值为 i,则称 i 是稳定的。序列恰好有 m 个数是稳定的
满足条件的序列可能很多,序列数对 10^9+7 取模。

Input

第一行一个数 T,表示有 T 组数据。
接下来 T 行,每行两个整数 n、m。
T=500000,n≤1000000,m≤1000000
 

Output

输出 T 行,每行一个数,表示求出的序列数

 

Sample Input

5
1 0
1 1
5 2
100 50
10000 5000

Sample Output

0
1
20
578028887
60695423

HINT

 

Source

鸣谢Menci上传

/*
水水的组合数+错排
C(n,m)*D[n-m]
tm bzoj为什么还是CE!!
*/
#include<bits/stdc++.h> #define N 1000002
#define M 1000000007 using namespace std;
int n,m;
long long inv[N]={,},fac[N]={,},f[N]={,},D[N]; inline int read()
{
int x=,f=;char c=getchar();
while(c>''||c<''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} inline int C(int a,int b)
{
return ((fac[a]*inv[b])%M*inv[a-b]%M)%M;
} inline void init()
{
fac[]=;
for(int i=;i<=N;i++)
{
fac[i]=(1ll*fac[i-]%M*i)%M;
f[i]=((M-M/i)*f[M%i])%M;
inv[i]=(inv[i-]*f[i])%M;
}
} int main()
{
//freopen("ly.in","r",stdin);
D[]=;D[]=;init();
for(int i=;i<=N;i++)
D[i]=((i-)*(D[i-]%M+D[i-]%M))%M;
int T;cin>>T;
while(T--)
{
n=read();m=read();
if (n-m==) printf("0\n");
else if(m==n) printf("1\n");
else if(m==) cout<<D[n]<<endl;
else cout<<(1ll*C(n,m)*D[n-m])%M<<endl;
}
return ;
}

bzoj4517[Sdoi2016]排列计数(组合数,错排)的更多相关文章

  1. 【BZOJ4517】[Sdoi2016]排列计数 组合数+错排

    [BZOJ4517][Sdoi2016]排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值 ...

  2. BZOJ4517:[SDOI2016]排列计数(组合数学,错排公式)

    Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...

  3. 洛谷——P4071 [SDOI2016]排列计数(错排+组合数学)

    P4071 [SDOI2016]排列计数 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列 ...

  4. BZOJ4517: [Sdoi2016]排列计数(组合数+错位排列)

    Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1626  Solved: 994[Submit][Status][Discuss] Descripti ...

  5. BZOJ4517 Sdoi2016 排列计数 【DP+组合计数】*

    BZOJ4517 Sdoi2016 排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 ...

  6. [BZOJ4517][SDOI2016]排列计数(错位排列)

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1616  Solved: 985[Submit][Statu ...

  7. bzoj千题计划282:bzoj4517: [Sdoi2016]排列计数

    http://www.lydsy.com/JudgeOnline/problem.php?id=4517 组合数+错排公式 #include<cstdio> #include<ios ...

  8. 【bzoj4517】[Sdoi2016]排列计数 组合数+dp

    题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条 ...

  9. bzoj4517: [Sdoi2016]排列计数--数学+拓展欧几里得

    这道题是数学题,由题目可知,m个稳定数的取法是Cnm 然后剩下n-m本书,由于编号为i的书不能放在i位置,因此其方法数应由错排公式决定,即D(n-m) 错排公式:D[i]=(i-1)*(D[i-1]+ ...

随机推荐

  1. Java之基于Eclipse搭建SSH框架(下)

    在上篇博客里,我简介了Tomcat滴配置与Struts2滴搭建,假设对这个还不会滴童鞋去看一下我滴上篇博客<Java之基于Eclipse搭建SSH框架(上)>.今天我们接着上篇博客滴内容. ...

  2. MongoDB:分片(简介 & 自动分片 & 片键)

    分片(增加服务器,水平扩展)是MongoDB的扩展方式,通过分片能过增加更多的机器来应对不断增加的负载和数据,还不影响应用. [简介] 分片(sharding)是指将数据拆分,将其分散存在不同的机器上 ...

  3. 软件系统架构 https://www.lanhusoft.com/Article/349.html

    跟蓝狐学习Nop--NopCommerce源码架构详解专题目录 Posted By : 蓝狐 Updated On : 2018-04-16 14:46 我们承接以下nop相关的业务,欢迎联系我们. ...

  4. Intel Chipsets

    http://en.wikipedia.org/wiki/Chipset Chipset From Wikipedia, the free encyclopedia     A chipset is ...

  5. 【POJ 1716】Integer Intervals(差分约束系统)

    id=1716">[POJ 1716]Integer Intervals(差分约束系统) Integer Intervals Time Limit: 1000MS   Memory L ...

  6. Objective C运行时(runtime)技术总结,好强大的runtime

    前言:          Objective C的runtime技术功能非常强大,能够在运行时获取并修改类的各种信息,包括获取方法列表.属性列表.变量列表,修改方法.属性,增加方法,属性等等,本文对相 ...

  7. STM32W108无线传感器网络节点自组织与移动智能体导航技术

    使用STM32W108无线开发板及节点完毕大规模网络的自组建,网络模型选择树型,网络组建完毕之后,使用基于接收信号强度指示RSSI(ReceivedSignal Strength Indication ...

  8. openwrt - squashfs-sysupgrade.bin 的生成过程

    squashfs-sysupgrade.bin 生成过程图 路径变量 $(KERNEL_BUILD_DIR)="/home/sam/Projects/openwrt-mt7620n/buil ...

  9. html-基本form元素---ShinePans

    <html> <meta http-equiv="content-type" content="text/html;charset=UTF-8" ...

  10. javascript模块化编程:CommonJS和AMD规范

    AMD规范,异步模块定义.与CommonJS规范齐名并列. 作用都是利于JavaScript的模块化编程. 模块化编程的好处就是: 1.可重用 2.独立 3.能解决加载的依赖性问题 4.能解决重复加载 ...