TensorFlow多线程输入数据处理框架(二)——输入文件队列
参考书
《TensorFlow:实战Google深度学习框架》(第2版)
一个简单的程序来生成样例数据。
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
# coding=utf-8 """
@author: Li Tian
@contact: 694317828@qq.com
@software: pycharm
@file: sample_data_produce1.py
@time: 2019/2/3 21:46
@desc: 一个简单的程序来生成样例数据
""" import tensorflow as tf # 创建TFRecord文件的帮助函数
def _int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) # 模拟海量数据情况下将数据写入不同的文件。num_shards定义了总共写入多少个文件
# instances_per_shard定义了每个文件中有多少个数据
num_shards = 2
instances_per_shard = 2
for i in range(num_shards):
# 将数据分为多个文件时,可以将不同文件以类似0000n-of-0000m的后缀区分。其中m表示了
# 数据总共被存在了多少个文件,n表示当前文件的编号。式样的方式既方便了通过正则表达式
# 获取文件列表,又在文件名中加入了更多的信息。
filename = ('./data.tfrecords-%.5d-of-%0.5d' % (i, num_shards))
writer = tf.python_io.TFRecordWriter(filename)
# 将数据封装成Example结构并写入TFRecord文件
for j in range(instances_per_shard):
# Example结构仅包含当前样例属于第几个文件以及是当前文件的第几个样本
example = tf.train.Example(features=tf.train.Features(feature={
'i': _int64_feature(i),
'j': _int64_feature(j)
}))
writer.write(example.SerializeToString())
writer.close()
运行结果:
展示了tf.train.match_filenames_once函数和tf.train.string_input_producer函数的使用方法。
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
# coding=utf-8 """
@author: Li Tian
@contact: 694317828@qq.com
@software: pycharm
@file: sample_data_deal1.py
@time: 2019/2/3 22:00
@desc: 展示了tf.train.match_filenames_once函数和tf.train.string_input_producer函数的使用方法
""" import tensorflow as tf # 使用tf.train.match_filenames_once函数获取文件列表
files = tf.train.match_filenames_once('./data.tfrecords-*') # 通过tf.train.string_input_producer函数创建输入队列,输入队列中的文件列表为
# tf.train.match_filenames_once函数获取的文件列表。这里将shuffle参数设为False
# 来避免随机打乱读文件的顺序。但一般在解决真实问题时,会将shuffle参数设置为True
filename_queue = tf.train.string_input_producer(files, shuffle=False) # 如前面所示读取并解析一个样本
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
features={
'i': tf.FixedLenFeature([], tf.int64),
'j': tf.FixedLenFeature([], tf.int64),
}
) with tf.Session() as sess:
# 虽然在本段程序中没有声明任何变量,但使用tf.train.match_filenames_once函数时
# 需要初始化一些变量。
tf.local_variables_initializer().run()
print(sess.run(files)) # 声明tf.train.Coordinator类来协同不同线程,并启动线程。
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord) # 多次执行获取数据的操作
for i in range(6):
print(sess.run([features['i'], features['j']])) # 请求处理的线程停止
coord.request_stop()
# 等待,直到处理的线程已经停止
coord.join(threads)
运行结果:
TensorFlow多线程输入数据处理框架(二)——输入文件队列的更多相关文章
- TensorFlow多线程输入数据处理框架(四)——输入数据处理框架
参考书 <TensorFlow:实战Google深度学习框架>(第2版) 输入数据处理的整个流程. #!/usr/bin/env python # -*- coding: UTF-8 -* ...
- Tensorflow多线程输入数据处理框架(一)——队列与多线程
参考书 <TensorFlow:实战Google深度学习框架>(第2版) 对于队列,修改队列状态的操作主要有Enqueue.EnqueueMany和Dequeue.以下程序展示了如何使用这 ...
- Tensorflow多线程输入数据处理框架
Tensorflow提供了一系列的对图像进行预处理的方法,但是复杂的预处理过程会减慢整个训练过程,所以,为了避免图像的预处理成为训练神经网络效率的瓶颈,Tensorflow提供了多线程处理输入数据的框 ...
- TensorFlow多线程输入数据处理框架(三)——组合训练数据
参考书 <TensorFlow:实战Google深度学习框架>(第2版) 通过TensorFlow提供的tf.train.batch和tf.train.shuffle_batch函数来将单 ...
- tensorflow学习笔记——多线程输入数据处理框架
之前我们学习使用TensorFlow对图像数据进行预处理的方法.虽然使用这些图像数据预处理的方法可以减少无关因素对图像识别模型效果的影响,但这些复杂的预处理过程也会减慢整个训练过程.为了避免图像预处理 ...
- 吴裕雄--天生自然 pythonTensorFlow图形数据处理:输入数据处理框架
import tensorflow as tf # 1. 创建文件列表,通过文件列表创建输入文件队列 files = tf.train.match_filenames_once("F:\\o ...
- 吴裕雄 python 神经网络——TensorFlow 输入数据处理框架
import tensorflow as tf files = tf.train.match_filenames_once("E:\\MNIST_data\\output.tfrecords ...
- 大数据处理框架之Strom:认识storm
Storm是分布式实时计算系统,用于数据的实时分析.持续计算,分布式RPC等. (备注:5种常见的大数据处理框架:· 仅批处理框架:Apache Hadoop:· 仅流处理框架:Apache Stor ...
- Java 多线程基础(十二)生产者与消费者
Java 多线程基础(十二)生产者与消费者 一.生产者与消费者模型 生产者与消费者问题是个非常典型的多线程问题,涉及到的对象包括“生产者”.“消费者”.“仓库”和“产品”.他们之间的关系如下: ①.生 ...
随机推荐
- net spy memcached 使用demo
package memcached; import java.io.IOException; import java.net.InetSocketAddress; import net.spy.mem ...
- IPv4与IPv6数据报格式
IPv4: IPv4数据报中的字段: 版本号:规定了数据报的IP协议版本,通过查看版本号,路由器能够确定如何解释IP数据报的剩余部分,因为不同IP版本使用不同的数据报格式. 首部长度:IPv4数据报可 ...
- C++ JSON解析库RapidJSON
https://github.com/Tencent/rapidjson jsontext.txt { "result" : [ { "face_id" : & ...
- hdoj 1875 畅通project再续【最小生成树 kruskal && prim】
畅通project再续 Problem Description 相信大家都听说一个"百岛湖"的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其它的小岛时都要通过划小船来实现. ...
- mysql 数据库导入错误:40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET
/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;/*!40101 SET @OLD_CHARACTER_SET_RES ...
- Java 快速失败( fail-fast ) 安全失败( fail-safe )
原文:http://www.cnblogs.com/ygj0930/p/6543350.html 快速失败( fail-fast ):当你在迭代一个集合的时候,如果有另一个线程正在修改你正在访问的那个 ...
- ulink函数的使用【学习笔记】
#include "apue.h" #include <fcntl.h> int main(void) { ) err_sys("open error&quo ...
- MYSQL进阶学习笔记九:MySQL事务的应用!(视频序号:进阶_21-22)
知识点十:MySQL 事务的应用 (21-22) 为什么要引入事务: 为什么要引入事务这个技术呢?现在的很多软件都是多用户,多程序,多线程的.对同一表可能同时有很多人在用,为保持数据的一致性,所以提出 ...
- JavaScript Map对象的实现
1. [代码]js代码 /* * MAP对象,实现MAP功能 * * 接口: * size() 获取MAP元素个数 * isEmpty() 判断MAP是否为空 * clear() ...
- 【Selenium】验证是否按照字母顺序排列, 不区分大小写
验证是否按照字母顺序排列, 不区分大小写 for(int j=0;j<s.length-1;j++){ String temp1=s[j].toLowerCase(); String temp2 ...