引言

对于任何使用 C 语言的人,如果问他们 C 语言的最大烦恼是什么,其中许多人可能会回答说是指针和内存泄漏。这些的确是消耗了开发人员大多数调试时间的事项。指针和内存泄漏对某些开发人员来说似乎令人畏惧,但是一旦您了解了指针及其关联内存操作的基础,它们就是您在 C 语言中拥有的最强大工具。

本文将与您分享开发人员在开始使用指针来编程前应该知道的秘密。本文内容包括:

  • 导致内存破坏的指针操作类型
  • 在使用动态内存分配时必须考虑的检查点
  • 导致内存泄漏的场景

如果您预先知道什么地方可能出错,那么您就能够小心避免陷阱,并消除大多数与指针和内存相关的问题。

什么地方可能出错?

有几种问题场景可能会出现,从而可能在完成生成后导致问题。在处理指针时,您可以使用本文中的信息来避免许多问题。

未初始化的内存

在本例中,p 已被分配了 10 个字节。这 10 个字节可能包含垃圾数据,如图 1 所示。

1
char *p = malloc ( 10 );
图 1. 垃圾数据

如果在对这个 p 赋值前,某个代码段尝试访问它,则可能会获得垃圾值,您的程序可能具有不可预测的行为。p 可能具有您的程序从未曾预料到的值。

良好的实践是始终结合使用 memset 和 malloc,或者使用 calloc

1
2
char *p = malloc (10);
memset(p,’’,10);

现在,即使同一个代码段尝试在对 p 赋值前访问它,该代码段也能正确处理 Null 值(在理想情况下应具有的值),然后将具有正确的行为。

内存覆盖

由于 p 已被分配了 10 个字节,如果某个代码片段尝试向 p 写入一个 11 字节的值,则该操作将在不告诉您的情况下自动从其他某个位置“吃掉”一个字节。让我们假设指针 q 表示该内存。

图 2. 原始 q 内容

图 3. 覆盖后的 q 内容

结果,指针 q 将具有从未预料到的内容。即使您的模块编码得足够好,也可能由于某个共存模块执行某些内存操作而具有不正确的行为。下面的示例代码片段也可以说明这种场景。

1
2
3
char *name = (char *) malloc(11);
// Assign some value to name
memcpy ( p,name,11); // Problem begins here

在本例中,memcpy 操作尝试将 11 个字节写到 p,而后者仅被分配了 10 个字节。

作为良好的实践,每当向指针写入值时,都要确保对可用字节数和所写入的字节数进行交叉核对。一般情况下,memcpy 函数将是用于此目的的检查点。

内存读取越界

内存读取越界 (overread) 是指所读取的字节数多于它们应有的字节数。这个问题并不太严重,在此就不再详述了。下面的代码提供了一个示例。

1
2
3
char *ptr = (char *)malloc(10);
char name[20] ;
memcpy ( name,ptr,20); // Problem begins here

在本例中,memcpy 操作尝试从 ptr 读取 20 个字节,但是后者仅被分配了 10 个字节。这还会导致不希望的输出。

内存泄漏

内存泄漏可能真正令人讨厌。下面的列表描述了一些导致内存泄漏的场景。

  • 重新赋值我将使用一个示例来说明重新赋值问题。

    1
    2
    char *memoryArea = malloc(10);
    char *newArea = malloc(10);

    这向如下面的图 4 所示的内存位置赋值。

    图 4. 内存位置

memoryArea 和 newArea 分别被分配了 10 个字节,它们各自的内容如图 4 所示。如果某人执行如下所示的语句(指针重新赋值)……

1
memoryArea = newArea;

则它肯定会在该模块开发的后续阶段给您带来麻烦。

在上面的代码语句中,开发人员将 memoryArea 指针赋值给 newArea 指针。结果,memoryArea 以前所指向的内存位置变成了孤立的,如下面的图 5 所示。它无法释放,因为没有指向该位置的引用。这会导致 10 个字节的内存泄漏。

图 5. 内存泄漏

在对指针赋值前,请确保内存位置不会变为孤立的。

  • 首先释放父块

假设有一个指针 memoryArea,它指向一个 10 字节的内存位置。该内存位置的第三个字节又指向某个动态分配的 10 字节的内存位置,如图 6 所示。

图 6. 动态分配的内存

1
free(memoryArea)

如果通过调用 free 来释放了 memoryArea,则 newArea 指针也会因此而变得无效。newArea 以前所指向的内存位置无法释放,因为已经没有指向该位置的指针。换句话说,newArea 所指向的内存位置变为了孤立的,从而导致了内存泄漏。

每当释放结构化的元素,而该元素又包含指向动态分配的内存位置的指针时,应首先遍历子内存位置(在此例中为 newArea),并从那里开始释放,然后再遍历回父节点。

这里的正确实现应该为:

1
2
free( memoryArea->newArea);
free(memoryArea);
  • 返回值的不正确处理

有时,某些函数会返回对动态分配的内存的引用。跟踪该内存位置并正确地处理它就成为了 calling 函数的职责。

1
2
3
4
5
6
7
8
9
char *func ( )
{
        return malloc(20); // make sure to memset this location to ‘’…
}
 
void callingFunc ( )
{
        func ( ); // Problem lies here
}

在上面的示例中,callingFunc() 函数中对 func() 函数的调用未处理该内存位置的返回地址。结果,func() 函数所分配的 20 个字节的块就丢失了,并导致了内存泄漏。

归还您所获得的

在开发组件时,可能存在大量的动态内存分配。您可能会忘了跟踪所有指针(指向这些内存位置),并且某些内存段没有释放,还保持分配给该程序。

始终要跟踪所有内存分配,并在任何适当的时候释放它们。事实上,可以开发某种机制来跟踪这些分配,比如在链表节点本身中保留一个计数器(但您还必须考虑该机制的额外开销)。

访问空指针

访问空指针是非常危险的,因为它可能使您的程序崩溃。始终要确保您不是 在访问空指针。

总结

本文讨论了几种在使用动态内存分配时可以避免的陷阱。要避免内存相关的问题,良好的实践是:

  • 始终结合使用 memset 和 malloc,或始终使用 calloc
  • 每当向指针写入值时,都要确保对可用字节数和所写入的字节数进行交叉核对。
  • 在对指针赋值前,要确保没有内存位置会变为孤立的。
  • 每当释放结构化的元素(而该元素又包含指向动态分配的内存位置的指针)时,都应首先遍历子内存位置并从那里开始释放,然后再遍历回父节点。
  • 始终正确处理返回动态分配的内存引用的函数返回值。
  • 每个 malloc 都要有一个对应的 free。
  • 确保您不是在访问空指针。

C 的指针和内存泄漏的更多相关文章

  1. C 语言中的指针和内存泄漏

    引言对于任何使用 C 语言的人,如果问他们 C 语言的最大烦恼是什么,其中许多人可能会回答说是指针和内存泄漏.这些的确是消耗了开发人员大多数调试时间的事项.指针和内存泄漏对某些开发人员来说似乎令人畏惧 ...

  2. C语言中的指针和内存泄漏

    引言 对于任何使用C语言的人,如果问他们C语言的最大烦恼是什么,其中许多人可能会回答说是指针和内存泄漏.这些的确是消耗了开发人员大多数调试时间的事项.指针和内存泄漏对某些开发人员来说似乎令人畏惧,但是 ...

  3. 【ZZ】C 语言中的指针和内存泄漏 & 编写高效的C程序与C代码优化

    C 语言中的指针和内存泄漏 http://www.ibm.com/developerworks/cn/aix/library/au-toughgame/ 本文讨论了几种在使用动态内存分配时可以避免的陷 ...

  4. [C]C语言中的指针和内存泄漏几种情况

    引言 原文地址:http://www.cnblogs.com/archimedes/p/c-point-memory-leak.html,转载请注明源地址. 对于任何使用C语言的人,如果问他们C语言的 ...

  5. C语言中的指针和内存泄漏几种情况

    引言 原文地址:http://www.cnblogs.com/archimedes/p/c-point-memory-leak.html,转载请注明源地址. 对于任何使用C语言的人,如果问他们C语言的 ...

  6. 内存泄漏与指针悬挂&野指针介绍

    内存泄漏概念:内存泄漏时指动态申请的内存空间没有正常释放,但是也不能继续使用的情况. 例如: char *ch1; ch1 = new char('A'); char = *ch2 = new cha ...

  7. iOS开发_内存泄漏、内存溢出和野指针之间的区别

    今天,在工作群中,被问到了内存泄漏和野指针指向的区别,自己答的不是很好,特意回来查了资料,在博文中总结一下经验,欢迎指正. 内存泄漏:是指在堆区,alloc 或new 创建了一个对象,但是并没有放到自 ...

  8. Objective-C 【多个对象内存管理(野指针&内存泄漏)】

    ------------------------------------------- 多个对象内存管理(野指针&内存泄漏) (注:这一部分知识请结合"单个对象内存管理"去 ...

  9. Analyze 静态分析工具中显示 大量的CF类型指针 内存leak 问题, Core Foundation 类型指针内存泄漏

    Analyze 静态分析工具中显示 大量的CF类型指针 内存leak 问题   今天使用Analyze 看了下项目,   解决办法,项目中使用了ARC,OC的指针类型我们完全不考虑release的问题 ...

随机推荐

  1. 网站如何从http升级成https

    基本概念: HTTP: 是互联网上应用最为广泛的一种网络协议,是一个客户端和服务器端请求和应答的标准,用于从WWW服务器传输超文本到本地浏览器的传输协议,它可以使浏览器更加高效,使网络传输减少. HT ...

  2. python_11(网络编程)

    第1章 ucp协议 1.1 特性 1.2 缺陷 1.3 UDP协议实时通信 第2章 socket的更多方法 2.1 面向锁的套接字方法 2.1.1 blocking设置非阻塞 2.1.2 Blocki ...

  3. poj3252Round Numbers

    链接 也算是组合 以前按组合做过一次 忘记怎么做的了 这次按dp写的 dp[i][j][g][k] 表示第i位为k(0|1)而且有j个1,g个0的情况数 貌似写的麻烦了...这一类的题,进行逐位计算就 ...

  4. 关于margin、padding 对内联元素的影响

    内联元素和块级元素的区别是新手必须要掌握的知识点.大家可能平时注意块级元素比较多.所以这里重点让我们来讲讲常见的width height margin  padding 对inline元素的影响. 测 ...

  5. 序列化shelve模块

    1.shelve对pickle进行封装,所以shelve也只能在python里使用. shelve可以进行多次dump而且顺序不会乱. import shelve f = shelve.open('s ...

  6. hihocoder offer收割编程练习赛8 B 拆字游戏

    思路: 模拟,dfs. 注意题目中的trick,输出一块的时候不要把其他块也输出了. 实现: #include <cstring> #include <iostream> #i ...

  7. 【学习笔记】深入理解js原型和闭包(10)——this

    接着上一节讲的话,应该轮到“执行上下文栈”了,但是这里不得不插入一节,把this说一下.因为this很重要,js的面试题如果不出几个与this有关的,那出题者都不合格. 其实,this的取值,分四种情 ...

  8. Oracle体系结构总览

    第一篇 Oracle架构总览 先让我们来看一张图   这张就是Oracle 9i的架构全图.看上去,很繁杂.是的,是这样的.现在让我们来梳理一下: 一.数据库.表空间.数据文件 1.数据库 数据库是数 ...

  9. lavarel功能总结

    详细可参见笔记:laraval学习笔记(二) 路由 route 绑定模型,绑定参数 模版 blade .blade.php后缀,有laravel自己的模版语法 模型 model 如果用create创建 ...

  10. JS实现让其他浏览器自动转至微信浏览器打开链接

    //判断是否是pc function is_pc() { var sUserAgent = navigator.userAgent.toLowerCase(); var bIsIpad = sUser ...