Poj 3233 矩阵快速幂,暑假训练专题中的某一道题目,矩阵快速幂的模板
题目链接 请猛戳~
Description
Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.
Input
The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.
Output
Output the elements of S modulo m in the same way as A is given.
Sample Input
2 2 4
0 1
1 1
Sample Output
1 2
2 3
结题思路:
当k为偶数时,s(k)=(1+A^(k/2))*(A+A^2+…+A^(k/2)) 当k为奇数时,s(k)=A+(A+A^(k/2+1))*(A+A^2+…+A^(k/2))加以递归求解
#include <iostream>
#include <string.h>
#include <cstdio>
using namespace std;
const int MAX = 32;
struct Matrix{
int v[MAX][MAX];
};
Matrix E;//定义单位矩阵 E
int n,k,M;
Matrix add(Matrix a,Matrix b){//矩阵加法运算
Matrix c;
for(int i = 1;i <= n;i++)
for(int j = 1;j <= n;j++){
c.v[i][j] = (a.v[i][j] + b.v[i][j]) % M;
}
return c;
}
Matrix mul(Matrix a,Matrix b){//矩阵乘法运算
Matrix c;
for(int i = 1;i <= n;i++)
for(int j = 1;j <= n;j++){
c.v[i][j] = 0;
for(int k = 1;k <= n;k++)
c.v[i][j] = (a.v[i][k] * b.v[k][j] + c.v[i][j]) % M;
}
return c;
}
Matrix pow(Matrix a,int k){//矩阵幂运算
if(k == 0){
memset(a.v,0,sizeof(a.v));
for(int i = 1;i <= n;i++)
a.v[i][i] = 1;
return a;
}else if(k == 1) return a;
Matrix c = pow(a,k / 2);
if(k & 1){
return mul(a,mul(c,c));
}else
return mul(c,c);
}
Matrix sum(Matrix a,int k){ //连续升幂求和
if(k == 1)return a;
Matrix b = pow(a,(k + 1) / 2);
Matrix c = sum(a,k / 2);
if(k % 2){
return add(a,mul(add(a,b),c));
}else
return mul(add(E,b),c);
}
void initE(){ //初始化单位矩阵E
memset(E.v,0,sizeof(E.v));
for(int i = 1;i <= n;i++) E.v[i][i] = 1;
}
void print(Matrix a){
for(int i = 1;i <= n;i++){
for(int j = 1;j <= n;j++)
printf("%d ",a.v[i][j]);
puts("");
}
}
Matrix get(){
Matrix a;
for(int i = 1;i <= n;i++)
for(int j = 1;j <= n;j++)scanf(" %d",&a.v[i][j]);
return a;
}
int main()
{ while(~scanf("%d%d%d",&n,&k,&M)){
initE();
Matrix a = get();
Matrix b = sum(a,k);
print(b);
}
return 0;
}
Poj 3233 矩阵快速幂,暑假训练专题中的某一道题目,矩阵快速幂的模板的更多相关文章
- 矩阵儿快速幂 - POJ 3233 矩阵力量系列
不要管上面的标题的bug 那是幂的意思,不是力量... POJ 3233 Matrix Power Series 描述 Given a n × n matrix A and a positive in ...
- POJ 3233 Matrix Power Series (矩阵快速幂)
题目链接 Description Given a n × n matrix A and a positive integer k, find the sum S = A + A^2 + A^3 + - ...
- 题解报告:poj 3233 Matrix Power Series(矩阵快速幂)
题目链接:http://poj.org/problem?id=3233 Description Given a n × n matrix A and a positive integer k, fin ...
- Matrix Power Series POJ - 3233 矩阵幂次之和。
矩阵幂次之和. 自己想着想着就想到了一个解法,但是还没提交,因为POJ崩了,做了一个FIB的前n项和,也是用了这个方法,AC了,相信是可以得. 提交了,是AC的 http://poj.org/prob ...
- POJ 3233 Matrix Power Series——快速幂&&等比&&分治
题目 给定一个 $n \times n$ 的矩阵 $A$ 和正整数 $k$ 和 $m$.求矩阵 $A$ 的幂的和. $$S = A + A^2 + ... + A^k$$ 输出 $S$ 的各个元素对 ...
- POJ 3233 Matrix Power Series (矩阵乘法)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 11954 Accepted: ...
- 矩阵十点【两】 poj 1575 Tr A poj 3233 Matrix Power Series
poj 1575 Tr A 主题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1575 题目大意:A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的 ...
- POJ 3233 Matrix Power Series(矩阵高速功率+二分法)
职务地址:POJ 3233 题目大意:给定矩阵A,求A + A^2 + A^3 + - + A^k的结果(两个矩阵相加就是相应位置分别相加).输出的数据mod m. k<=10^9. 这 ...
- POJ - 3233 矩阵套矩阵
题意:给你矩阵\(A\),求\(S=\sum_{i=1}^{k}A^i\) 构造矩阵 \[ \begin{bmatrix} A & E \\ 0 & E\\ \end{bmatrix} ...
随机推荐
- [Luogu] P1865 A % B Problem
题目描述 区间质数个数 输入输出格式 输入格式: 一行两个整数 询问次数n,范围m 接下来n行,每行两个整数 l,r 表示区间 输出格式: 对于每次询问输出个数 t,如l或r∉[1,m]输出 Cros ...
- 零基础入门学习Python(16)--序列!序列!
前言 你可能发现了,小甲鱼把这个列表,元组,字符串放在一起讲是有道理的,它们有许多共同点: 都可以通过索引得到每一个元素 默认索引值总是从0开始 可以通过分片的方法得到一个范围内的元素的集合 有很多共 ...
- MyBatis 多参问题
当传入的参数为多个参数时 1 可以不封装为Javabean直接传入,写法如下 public List<XXXBean> getXXXBeanList(String xxId, String ...
- 洛谷 4932 洛谷10月月赛II T1 浏览器
[题解] x xor y的结果在二进制下有奇数个1,等价于x与y在二进制下的1的个数之和为奇数,因为x xor y减少的1的个数一定是偶数(两个数这一位都为1,xor的结果为0,减少了2个1) 那么答 ...
- Poj 2187 凸包模板求解
Poj 2187 凸包模板求解 传送门 由于整个点数是50000,而求凸包后的点也不会很多,因此直接套凸包之后两重循环即可求解 #include <queue> #include < ...
- 慕课笔记利用css进行布局【混合布局练习】
通过学习div的布局,以一个简单的内容管理网站的布局为例子,用div+css进行简单的网页布局,加深学印象: <html> <head> <title>CSS+di ...
- [HDU1576] A/B(扩展欧几里得)
传送门 n = A % 9973 -> n = A - A / 9973 * 9973 设 x = A / B(题目所述,B|A) -> A = B * x 所以 B * x - A / ...
- [BZOJ3751][NOIP2014]解方程(数学相关+乱搞)
题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .i ...
- 接龙游戏(codevs 1051)
1051 接龙游戏 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 题目描述 Description 给出了N个单词,已经按长度排好了序 ...
- 使用谷歌Z生成条形码以及二维码
下载地址:http://zxingnet.codeplex.com/ zxing.net是.net平台下编解条形码和二维码的工具,使用非常方便. 首先下载二进制dll文件,引入工程: using Sy ...