在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧.

必胜点和必败点的概念:
       P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败。
       N点:必胜点,处于此情况下,双方操作均正确的情况下必胜。
必胜点和必败点的性质:
        1、所有终结点是 必败点 P 。(我们以此为基本前提进行推理,换句话说,我们以此为假设)
        2、从任何必胜点N 操作,至少有一种方式可以进入必败点 P。
        3、无论如何操作,必败点P 都只能进入 必胜点 N。
我们研究必胜点和必败点的目的时间为题进行简化,有助于我们的分析。通常我们分析必胜点和必败点都是以终结点进行逆序分析。我们以hdu
1847 Good Luck in CET-4 Everybody!
为例:
当 n = 0 时,显然为必败点,因为此时你已经无法进行操作了
当 n = 1 时,因为你一次就可以拿完所有牌,故此时为必胜点
当 n = 2 时,也是一次就可以拿完,故此时为必胜点
当 n = 3 时,要么就是剩一张要么剩两张,无论怎么取对方都将面对必胜点,故这一点为必败点。
以此类推,最后你就可以得到;
      n    :   0    1    2    3    4   5    6 ...
position:  P    N   N    P   N   N   P ...
你发现了什么没有,对,他们就是成有规律,使用了 P/N来分析,有没有觉得问题变简单了。
现在给你一个稍微复杂一点点的: hdu
2147 kiki's game

现在我们就来介绍今天的主角吧。组合游戏的和通常是很复杂的,但是有一种新工具,可以使组合问题变得简单————SG函数和SG定理。

Sprague-Grundy定理(SG定理):

游戏和的SG函数等于各个游戏SG函数的Nim和。这样就可以将每一个子游戏分而治之,从而简化了问题。而Bouton定理就是Sprague-Grundy定理在Nim游戏中的直接应用,因为单堆的Nim游戏 SG函数满足 SG(x) = x。不知道Nim游戏的请移步:这里

SG函数:

首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。

对于任意状态 x , 定义 SG(x) = mex(S),其中 S 是 x 后继状态的SG函数值的集合。如 x 有三个后继状态分别为 SG(a),SG(b),SG(c),那么SG(x) = mex{SG(a),SG(b),SG(c)}。 这样 集合S 的终态必然是空集,所以SG函数的终态为 SG(x) = 0,当且仅当 x 为必败点P时。

【实例】取石子问题

有1堆n个的石子,每次只能取{ 1, 3, 4 }个石子,先取完石子者胜利,那么各个数的SG值为多少?

SG[0]=0,f[]={1,3,4},

x=1 时,可以取走1 - f{1}个石子,剩余{0}个,所以 SG[1] = mex{ SG[0] }= mex{0} = 1;

x=2 时,可以取走2 - f{1}个石子,剩余{1}个,所以 SG[2] = mex{ SG[1] }= mex{1} = 0;

x=3 时,可以取走3 - f{1,3}个石子,剩余{2,0}个,所以 SG[3] = mex{SG[2],SG[0]} = mex{0,0} =1;

x=4 时,可以取走4-  f{1,3,4}个石子,剩余{3,1,0}个,所以 SG[4] = mex{SG[3],SG[1],SG[0]} = mex{1,1,0} = 2;

x=5 时,可以取走5 - f{1,3,4}个石子,剩余{4,2,1}个,所以SG[5] = mex{SG[4],SG[2],SG[1]} =mex{2,0,1} = 3;

以此类推.....

x        0  1  2  3  4  5  6  7  8....

SG[x]    0  1  0  1  2  3  2  0  1....

由上述实例我们就可以得到SG函数值求解步骤,那么计算1~n的SG函数值步骤如下:

1、使用 数组f 将 可改变当前状态 的方式记录下来。

2、然后我们使用 另一个数组 将当前状态x 的后继状态标记。

3、最后模拟mex运算,也就是我们在标记值中 搜索 未被标记值 的最小值,将其赋值给SG(x)。

4、我们不断的重复 2 - 3 的步骤,就完成了 计算1~n 的函数值。

代码实现如下:

//f[N]:可改变当前状态的方式,N为方式的种类,f[N]要在getSG之前先预处理
//SG[]:0~n的SG函数值
//S[]:为x后继状态的集合
int f[N],SG[MAXN],S[MAXN];
void getSG(int n){
int i,j;
memset(SG,0,sizeof(SG));
//因为SG[0]始终等于0,所以i从1开始
for(i = 1; i <= n; i++){
//每一次都要将上一状态 的 后继集合 重置
memset(S,0,sizeof(S));
for(j = 0; f[j] <= i && j <= N; j++)
S[SG[i-f[j]]] = 1; //将后继状态的SG函数值进行标记
for(j = 0;; j++) if(!S[j]){ //查询当前后继状态SG值中最小的非零值
SG[i] = j;
break;
}
}
}

现在我们来一个实战演练(题目链接):点击打开链接

只要按照上面的思路,解决这个就是分分钟的问题。

代码如下:

#include <iostream>
#include<string.h>
using namespace std; const int MAXN=1010;
const int N=20; //f[N]:可改变当前状态的方式,N为方式的种类,f[N]要在getSG之前先预处理
//SG[]:0~n的SG函数值
//S[]:为x后继状态的集合
int f[N],SG[MAXN],S[MAXN];
void getSG(int n){
int i,j;
memset(SG,0,sizeof(SG));
//因为SG[0]始终等于0,所以i从1开始
for(i = 1; i <= n; i++){
//每一次都要将上一状态 的 后继集合 重置
memset(S,0,sizeof(S));
for(j = 0; f[j] <= i && j <= N; j++)
S[SG[i-f[j]]] = 1; //将后继状态的SG函数值进行标记
for(j = 0;; j++) if(!S[j]){ //查询当前后继状态SG值中最小的非零值
SG[i] = j;
break;
}
}
}
int main()
{
//cout << "Hello world!" << endl;
int n,m,k;
f[0]=1;
f[1]=1;
for(int i=2;i<=16;i++)
{
f[i]=f[i-1]+f[i-2];
}
getSG(1000);
for(int i=0;i<100;i++)
{
cout<<SG[i]<<" ";
}
cout<<endl;
while(cin>>n>>m>>k&&n!=0&&m!=0&&k!=0)
{ if(SG[n]^SG[m]^SG[k])
cout<<"Fibo"<<endl;
else
cout<<"Nacci"<<endl;
}
return 0;
}

大家是不是还没有过瘾,那我就在给大家附上一些组合博弈的题目:

POJ 2234 Matches Game

HOJ 4388 Stone Game II

POJ 2975 Nim

HOJ 1367 A Stone Game

POJ 2505 A multiplication game

ZJU 3057 beans game

POJ 1067 取石子游戏

POJ 2484 A Funny Game

POJ 2425 A Chess Game

POJ 2960 S-Nim

POJ 1704 Georgia and Bob

POJ 1740 A New Stone Game

POJ 2068 Nim

POJ 3480 John

POJ 2348 Euclid's Game

HOJ 2645 WNim

POJ 3710 Christmas Game 

POJ 3533 Light Switching Game

(如有错误,欢迎指正,转载注明出处)

组合游戏 - SG函数和SG定理的更多相关文章

  1. SG函数和SG定理【详解】

    在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念:        P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败.        N点:必胜点 ...

  2. (转载)--SG函数和SG定理【详解】

    在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念:        P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败.        N点:必胜点 ...

  3. SG函数和SG定理(Sprague_Grundy)

    一.必胜点和必败点的概念 P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败.       N点:必胜点,处于此情况下,双方操作均正确的情况下必胜. 必胜点和必败点的性质:     ...

  4. SG函数和SG定理

    Fibonacci again and again 利用SG函数求出每一堆的SG值,如果三个值的异或和为零 先手必败态,否则,先手必胜态. #include <bits/stdc++.h> ...

  5. Nim游戏与SG函数 ——博弈论小结

    写这篇博客之前,花了许久时间来搞这个SG函数,倒是各路大神的论文看的多,却到底没几个看懂的.还好网上一些大牛博客还是性价比相当高的,多少理解了些,也自己通过做一些题加深了下了解. 既然是博弈,经典的N ...

  6. SG定理与SG函数

    一个蒟蒻来口胡$SG$函数与$SG$定理. 要是发现有不对之处望指教. 首先我们来了解一下$Nim$游戏. $Nim$游戏是公平组合游戏的一种,意思是当前可行操作仅依赖于当前局势. 而经典$Nim$游 ...

  7. 博弈论 | 详解搞定组合博弈问题的SG函数

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天这篇是算法与数据结构专题的第27篇文章,我们继续深入博弈论问题.今天我们要介绍博弈论当中非常重要的一个定理和函数,通过它我们可以解决许多 ...

  8. Wannafly挑战赛23 T2游戏 SG函数

    哎,被卡科技了,想了三个小时,最后还是大佬给我说是\(SG\)函数. \(SG\)函数,用起来很简单,证明呢?(不可能的,这辈子都是不可能的) \(SG\)定理 游戏的\(SG\)函数就是各个子游戏的 ...

  9. [您有新的未分配科技点]博弈论入门:被博弈论支配的恐惧(Nim游戏,SG函数)

    今天初步学习了一下博弈论……感觉真的是好精妙啊……希望这篇博客可以帮助到和我一样刚学习博弈论的同学们. 博弈论,又被称为对策论,被用于考虑游戏中个体的预测行为和实际行为,并研究他们的应用策略.(其实这 ...

随机推荐

  1. 从壹开始前后端分离【重要】║最全的部署方案 & 最丰富的错误分析

    缘起 哈喽大家好!今天是周一了,这几天趁着午休的时间又读了一本书<偷影子的人>,可以看看

  2. Java: 创建自带依赖库的Jar包

    pom.xml文件如下: <?xml version="1.0" encoding="UTF-8"?> <project xmlns=&quo ...

  3. C#:excel导入导出

    资源:excelService 服务 http://download.csdn.net/detail/istend/8060501 排列问题 导出时,数字和字符的排列格式默认不一样,数字靠右,字符靠左 ...

  4. leetcode——Implement strStr() 实现字符串匹配函数(AC)

    Implement strStr(). Returns a pointer to the first occurrence of needle in haystack, or null if need ...

  5. leetcode_Repeated DNA Sequences

    描写叙述: All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: &qu ...

  6. iOS开发——高级篇——iOS涂鸦画板效果实现

    一个简单的绘图应用,模仿苹果自带软件备忘录里的涂鸦功能 核心代码 #import "DrawView.h" #import "DrawPath.h" @inte ...

  7. SpringMVC_基本配置 --跟海涛学SpringMVC(和自己在项目中的实际使用的对比)

    ☆依赖jar包: 1.Spring框架jar 包: 为了简单,将spring-framework-3.1.1.RELEASE-with-docs.zip/dist/下的所有jar包拷贝到项目的WEB- ...

  8. 查源码分析 游标 写 需要 cursors 一切不看源码的代码引入都是定时炸弹的启动

    https://github.com/PyMySQL/PyMySQL/blob/master/pymysql/__init__.py 建立连接 def Connect(*args, **kwargs) ...

  9. 使用ADO.NET对SQL Server数据库进行訪问

    在上一篇博客中我们给大家简介了一下VB.NET语言的一些情况,至于理论知识的学习我们能够利用VB的知识体系为基础.再将面向对象程序设计语言的知识进行融合便可进行编程实战. 假设我们须要訪问一个企业关系 ...

  10. 剑指Offer面试题11(Java版):数值的整数次方

    题目:实现函数double Power(double base,int exponent),求base的exponent次方.不得使用库函数,同一时候不须要考虑大数问题 1.自以为非常easy的解法: ...