01 概述

Greedy Randomized Adaptive Search,贪婪随机自适应搜索(GRAS),是组合优化问题中的多起点元启发式算法,在算法的每次迭代中,主要由两个阶段组成:构造(construction)和局部搜索( local search)。 构造(construction)阶段主要用于生成一个可行解,而后该初始可行解会被放进局部搜索进行邻域搜索,直到找到一个局部最优解为止。

02 整体框架

如上面所说,其实整一个算法的框架相对于其他算法来说还算比较简单明了,大家可以先看以下整体的伪代码:

GRAS主要由两部分组成:

  • Greedy_Randomized_Construction:在贪心的基础上,加入一定的随机因素,构造初始可行解。
  • Local Search:对上面构造的初始可行解进行邻域搜索,直到找到一个局部最优解。

然后再多说两句:

  1. Repair是什么鬼?

    有时候由于随机因素的加入,Greedy_Randomized_Construction阶段生成的解不一定都是可行解,所以为了保证下一步的Local Search能继续进行,加入repair算子,对解进行修复,保证其可行。

  2. 不是说自适应(Adaptive)吗?我怎么没看到Adaptive 的过程?

    别急,这个后面具体举例的时候会详细讲到。

03 举个例子说明

为了大家能更加深入理解该算法,我们举一个简单的例子来为大家详细讲解算法的流程。

好了,相信大家都看懂上面的问题了(看不懂也别问我,摊手)。对于上述问题,我们来一步一个脚印用GRAS来求解之,来,跟紧小编的脚步……

强调了很多次,GRAS由两部分组成:Greedy_Randomized_Construction和Local Search,所以,在求解具体问题的时候,完成这两部分的设计,然后按照第二节所示的框架搭起来就可以。

3.1 Greedy_Randomized_Construction

这里还是老规矩,先上伪代码给大家看看,然后我们再进行讲解,毕竟对于算法来说,伪代码的作用不言而喻。

  • 第1行,一开始解是一个空集。
  • 第2行,初始化候选元素的集合,这里候选元素是指能放进Solution的元素(也就是目前Solution里面没有的),比如1,2,3……。
  • 第3行,对候选集合的每个元素进行评估,计算将元素x放入Solution会导致目标函数f改变量delta_x。
  • 第5行,根据delta_x对各个元素排序,选取部分较好的候选元素组成RCL表(贪心性体现在这里)。
  • 第6行,随机在RCL中选取一个元素放进Solution。(算法的随机性)
  • 第8、9行,更新候选元素集合,然后对每个元素进行重新评估计算delta值。(算法的自适应性体现在这里)

相信经过上面如此详细的介绍,大家都懂了吧!

3.2 Local Search

关于Local Search方面的内容,相信大家学习heuristic这么久了,就不用我多说什么了吧:

简单看一下伪代码即可,主要是邻域算子的设计,然后就是在邻域里面进行搜索,找到一个局部最优解为止。然后关于邻域搜索,有best-improving or first-improving strategy 两种策略,这个下次有时间出个专题给大家讲明白一些相关概念吧。

04 再论Greedy_Randomized_Construction

前面我们说了,Greedy_Randomized_Construction用于生成初始解,既然是Greedy_Randomized两个结合体,那么肯定就有一个权重分配的问题,即,是Greedy成分多一点呢?还是Randomized成分多一点好呢?因此,为了控制这两个小老弟的权重,防止某个家伙在该过程中用力过猛导致解不那么好的情况,我们引入一个参数α:

其他部分就不再多说,可以看到,上面的α参数主要是控制RCL的长度:

  • 当α=0时,纯贪心,只能选取最优的候选元素。
  • 当α=1时,纯随机,所有候选元素都可随机选。

05 代码实现

由于小编精力有限,就不从头写一遍了,从GitHub上找了一个感觉还不错的算法给大家,也是求解TSP问题的。不过说实在的,python写算法的速度是很慢的,无论是速度还是算法架构等方面都不推荐大家用matlab或者python写大型优化算法。

运行结果如下:

代码算例以及相关运行结果请关注公众号【程序猿声】,后台回复:GRAS,即可下载

############################################################################

# Created by: Prof. Valdecy Pereira, D.Sc.
# UFF - Universidade Federal Fluminense (Brazil)
# email: valdecy.pereira@gmail.com
# Course: Metaheuristics
# Lesson: Local Search-GRASP # Citation:
# PEREIRA, V. (2018). Project: Metaheuristic-Local_Search-GRASP, File: Python-MH-Local Search-GRASP.py, GitHub repository: <https://github.com/Valdecy/Metaheuristic-Local_Search-GRASP> ############################################################################ # Required Libraries
import pandas as pd
import random
import numpy as np
import copy
import os
from matplotlib import pyplot as plt # Function: Tour Distance
def distance_calc(Xdata, city_tour):
distance = 0
for k in range(0, len(city_tour[0])-1):
m = k + 1
distance = distance + Xdata.iloc[city_tour[0][k]-1, city_tour[0][m]-1]
return distance # Function: Euclidean Distance
def euclidean_distance(x, y):
distance = 0
for j in range(0, len(x)):
distance = (x.iloc[j] - y.iloc[j])**2 + distance
return distance**(1/2) # Function: Initial Seed
def seed_function(Xdata):
seed = [[],float("inf")]
sequence = random.sample(list(range(1,Xdata.shape[0]+1)), Xdata.shape[0])
sequence.append(sequence[0])
seed[0] = sequence
seed[1] = distance_calc(Xdata, seed)
return seed # Function: Build Distance Matrix
def buid_distance_matrix(coordinates):
Xdata = pd.DataFrame(np.zeros((coordinates.shape[0], coordinates.shape[0])))
for i in range(0, Xdata.shape[0]):
for j in range(0, Xdata.shape[1]):
if (i != j):
x = coordinates.iloc[i,:]
y = coordinates.iloc[j,:]
Xdata.iloc[i,j] = euclidean_distance(x, y)
return Xdata # Function: Tour Plot
def plot_tour_distance_matrix (Xdata, city_tour):
m = Xdata.copy(deep = True)
for i in range(0, Xdata.shape[0]):
for j in range(0, Xdata.shape[1]):
m.iloc[i,j] = (1/2)*(Xdata.iloc[0,j]**2 + Xdata.iloc[i,0]**2 - Xdata.iloc[i,j]**2)
m = m.values
w, u = np.linalg.eig(np.matmul(m.T, m))
s = (np.diag(np.sort(w)[::-1]))**(1/2)
coordinates = np.matmul(u, s**(1/2))
coordinates = coordinates.real[:,0:2]
xy = pd.DataFrame(np.zeros((len(city_tour[0]), 2)))
for i in range(0, len(city_tour[0])):
if (i < len(city_tour[0])):
xy.iloc[i, 0] = coordinates[city_tour[0][i]-1, 0]
xy.iloc[i, 1] = coordinates[city_tour[0][i]-1, 1]
else:
xy.iloc[i, 0] = coordinates[city_tour[0][0]-1, 0]
xy.iloc[i, 1] = coordinates[city_tour[0][0]-1, 1]
plt.plot(xy.iloc[:,0], xy.iloc[:,1], marker = 's', alpha = 1, markersize = 7, color = 'black')
plt.plot(xy.iloc[0,0], xy.iloc[0,1], marker = 's', alpha = 1, markersize = 7, color = 'red')
plt.plot(xy.iloc[1,0], xy.iloc[1,1], marker = 's', alpha = 1, markersize = 7, color = 'orange')
return # Function: Tour Plot
def plot_tour_coordinates (coordinates, city_tour):
coordinates = coordinates.values
xy = pd.DataFrame(np.zeros((len(city_tour[0]), 2)))
for i in range(0, len(city_tour[0])):
if (i < len(city_tour[0])):
xy.iloc[i, 0] = coordinates[city_tour[0][i]-1, 0]
xy.iloc[i, 1] = coordinates[city_tour[0][i]-1, 1]
else:
xy.iloc[i, 0] = coordinates[city_tour[0][0]-1, 0]
xy.iloc[i, 1] = coordinates[city_tour[0][0]-1, 1]
plt.plot(xy.iloc[:,0], xy.iloc[:,1], marker = 's', alpha = 1, markersize = 7, color = 'black')
plt.plot(xy.iloc[0,0], xy.iloc[0,1], marker = 's', alpha = 1, markersize = 7, color = 'red')
plt.plot(xy.iloc[1,0], xy.iloc[1,1], marker = 's', alpha = 1, markersize = 7, color = 'orange')
return # Function: Rank Cities by Distance
def ranking(Xdata, city = 0):
rank = pd.DataFrame(np.zeros((Xdata.shape[0], 2)), columns = ['Distance', 'City'])
for i in range(0, rank.shape[0]):
rank.iloc[i,0] = Xdata.iloc[i,city]
rank.iloc[i,1] = i + 1
rank = rank.sort_values(by = 'Distance')
return rank # Function: RCL
def restricted_candidate_list(Xdata, greediness_value = 0.5):
seed = [[],float("inf")]
sequence = []
sequence.append(random.sample(list(range(1,Xdata.shape[0]+1)), 1)[0])
for i in range(0, Xdata.shape[0]):
count = 1
rand = int.from_bytes(os.urandom(8), byteorder = "big") / ((1 << 64) - 1)
if (rand > greediness_value and len(sequence) < Xdata.shape[0]):
next_city = int(ranking(Xdata, city = sequence[-1] - 1).iloc[count,1])
while next_city in sequence:
count = np.clip(count+1,1,Xdata.shape[0]-1)
next_city = int(ranking(Xdata, city = sequence[-1] - 1).iloc[count,1])
sequence.append(next_city)
elif (rand <= greediness_value and len(sequence) < Xdata.shape[0]):
next_city = random.sample(list(range(1,Xdata.shape[0]+1)), 1)[0]
while next_city in sequence:
next_city = int(random.sample(list(range(1,Xdata.shape[0]+1)), 1)[0])
sequence.append(next_city)
sequence.append(sequence[0])
seed[0] = sequence
seed[1] = distance_calc(Xdata, seed)
return seed # Function: 2_opt
def local_search_2_opt(Xdata, city_tour):
tour = copy.deepcopy(city_tour)
best_route = copy.deepcopy(tour)
seed = copy.deepcopy(tour)
for i in range(0, len(tour[0]) - 2):
for j in range(i+1, len(tour[0]) - 1):
best_route[0][i:j+1] = list(reversed(best_route[0][i:j+1]))
best_route[0][-1] = best_route[0][0]
best_route[1] = distance_calc(Xdata, best_route)
if (best_route[1] < tour[1]):
tour[1] = copy.deepcopy(best_route[1])
for n in range(0, len(tour[0])):
tour[0][n] = best_route[0][n]
best_route = copy.deepcopy(seed)
return tour # Function: GRASP
def greedy_randomized_adaptive_search_procedure(Xdata, city_tour, iterations = 50, rcl = 25, greediness_value = 0.5):
count = 0
best_solution = copy.deepcopy(city_tour)
while (count < iterations):
rcl_list = []
for i in range(0, rcl):
rcl_list.append(restricted_candidate_list(Xdata, greediness_value = greediness_value))
candidate = int(random.sample(list(range(0,rcl)), 1)[0])
city_tour = local_search_2_opt(Xdata, city_tour = rcl_list[candidate])
while (city_tour[0] != rcl_list[candidate][0]):
rcl_list[candidate] = copy.deepcopy(city_tour)
city_tour = local_search_2_opt(Xdata, city_tour = rcl_list[candidate])
if (city_tour[1] < best_solution[1]):
best_solution = copy.deepcopy(city_tour)
count = count + 1
print("Iteration =", count, "-> Distance =", best_solution[1])
print("Best Solution =", best_solution)
return best_solution ######################## Part 1 - Usage #################################### X = pd.read_csv('Python-MH-Local Search-GRASP-Dataset-01.txt', sep = '\t') #17 cities = 1922.33
seed = seed_function(X)
lsgrasp = greedy_randomized_adaptive_search_procedure(X, city_tour = seed, iterations = 5, rcl = 5, greediness_value = 0.5)
plot_tour_distance_matrix(X, lsgrasp) # Red Point = Initial city; Orange Point = Second City # The generated coordinates (2D projection) are aproximated, depending on the data, the optimum tour may present crosses. Y = pd.read_csv('Python-MH-Local Search-GRASP-Dataset-02.txt', sep = '\t') # Berlin 52 = 7544.37
X = buid_distance_matrix(Y)
seed = seed_function(X)
lsgrasp = greedy_randomized_adaptive_search_procedure(X, city_tour = seed, iterations = 10, rcl = 15, greediness_value = 0.5)
plot_tour_coordinates (Y, lsgrasp) # Red Point = Initial city; Orange Point = Second City

【优化算法】Greedy Randomized Adaptive Search算法 超详细解析,附代码实现TSP问题求解的更多相关文章

  1. 【智能算法】粒子群算法(Particle Swarm Optimization)超详细解析+入门代码实例讲解

    喜欢的话可以扫码关注我们的公众号哦,更多精彩尽在微信公众号[程序猿声] 01 算法起源 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),1995 年由E ...

  2. 【智能算法】变邻域搜索算法(Variable Neighborhood Search,VNS)超详细解析和TSP代码实例以及01背包代码实例

    喜欢的话可以扫码关注我们的公众号哦,更多精彩尽在微信公众号[程序猿声] 00 目录 局部搜索再次科普 变邻域搜索 造轮子写代码 01 局部搜索科普三连 虽然之前做的很多篇启发式的算法都有跟大家提过局部 ...

  3. (转)MySQL优化笔记(八)--锁机制超详细解析(锁分类、事务并发、引擎并发控制)

    当一个系统访问量上来的时候,不只是数据库性能瓶颈问题了,数据库数据安全也会浮现,这时候合理使用数据库锁机制就显得异常重要了. 原文:http://www.jianshu.com/p/163c96983 ...

  4. 超详细的Xcode代码格式化教程,可自定义样式。

    超详细的Xcode代码格式化教程,可自定义样式. 为什么要格式化代码 当团队内有多人开发的时候,每个人写的代码格式都有自己的喜好,也可能会忙着写代码而忽略了格式的问题.在之前,我们可能会写完代码后,再 ...

  5. 【算法】变邻域搜索算法(Variable Neighborhood Search,VNS)超详细一看就懂的解析

    更多精彩尽在微信公众号[程序猿声] 变邻域搜索算法(Variable Neighborhood Search,VNS)一看就懂的解析 00 目录 局部搜索再次科普 变邻域搜索 造轮子写代码 01 局部 ...

  6. 干货 | 自适应大邻域搜索(Adaptive Large Neighborhood Search)入门到精通超详细解析-概念篇

    01 首先来区分几个概念 关于neighborhood serach,这里有好多种衍生和变种出来的胡里花俏的算法.大家在上网搜索的过程中可能看到什么Large Neighborhood Serach, ...

  7. 神经网络之反向传播算法(BP)公式推导(超详细)

    反向传播算法详细推导 反向传播(英语:Backpropagation,缩写为BP)是"误差反向传播"的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见 ...

  8. 数据结构与算法(十):红黑树与TreeMap详细解析

    本文目录 一.为什么要创建红黑树这种数据结构 在上篇我们了解了AVL树,既然已经有了AVL这种平衡的二叉排序树,为什么还要有红黑树呢? AVL树通过定义我们知道要求树中每一个结点的左右子树高度差的绝对 ...

  9. RCNN系列超详细解析

    一.基于Region Proposal(候选区域)的深度学习目标检测算法 Region Proposal(候选区域),就是预先找出图中目标可能出现的位置,通过利用图像中的纹理.边缘.颜色等信息,保证在 ...

随机推荐

  1. HDU 3966

    树链剖分 练模板: 用的 是HH的线段树 虽然之前是我不用的摸板 修改区间 求点值: CODE: #pragma comment(linker,"/STACK:1024000000,1024 ...

  2. 禁用Bootstrap点击空白,modal自动关闭

    手动触发modal:       $('#myModal').modal(): 禁用点击空白,modal自动关闭:$('#myModal').modal({backdrop: 'static', ke ...

  3. OSChinaclient源代码学习(3)--轮询机制的实现

    主要以OSChina Androidclient源代码中Notice的轮询机制进行解读. 一.基础知识 一般IM(即使通讯)的实现有两种方式:推送和轮询,推送就是server主动向client发送消息 ...

  4. Duplicate property mapping of contactPhone found in

    启动的时候报Duplicate property mapping of contactPhone found in com....的错误,是因为在建立实体对象的时候,有字段重复了,有的是继承了父类的字 ...

  5. 【Mongodb教程 第九课 】MongoDB 删除文档

    remove() 方法 MongoDB的 remove() 方法用于从集合中删除文档.remove() 方法接受两个参数.第一个是删除criteria ,第二是justOne标志: deletion ...

  6. linux远程管理工具:putty

    使用QTP测试文件上传和目录做成是否成功,必须先将文件和目录下载到本地,再作比较.现在下载工具众多,其中putty是最出色的一个,支持linux服务器,这点很重要“免费的”.下面就让我们来看一下吧! ...

  7. PADs 元器件PCB建库

    直接看图就好了,上图! 有几点需要记住的: 如果没有datasheet的情况下,与焊盘相比,阻焊大0.1mm,钢网小0.1mm.或者阻焊大0.05mm,钢网等大,具体要看引脚的间距. 焊盘太大,比如1 ...

  8. iOS音频播放 (四):AudioFile 转

    原文出处 : http://msching.github.io/blog/2014/07/19/audio-in-ios-4/ 前言 接着第三篇的AudioStreamFile这一篇要来聊一下Audi ...

  9. Real-Time Compressive Tracking 论文笔记

    总体思想 1 利用符合压缩感知RIP条件的随机感知矩阵对多尺度图像进行降维 2 然后对降维的特征採用简单的朴素贝叶斯进行分类 算法主要流程 1 在t帧的时候,我们採样得到若干张目标(正样本)和背景(负 ...

  10. break return continue

    1.return 语句的作用 (1) return 从当前的方法中退出,返回到该调用的方法的语句处,继续执行 (2) return 返回一个值给调用该方法的语句,返回值的数据类型必须与方法的声明中的返 ...