Apple Tree POJ - 2486

题目大意:一棵点带权有根树,根节点为1。从根节点出发,走k步,求能收集的最大权值和。

树形dp。复杂度可能是O(玄学),不会超过$O(nk^2)$。(反正这题不卡这个,考思想)参考

ans[i][j][0]表示i点以下共走j步,不回来,可能收集到最大的权值
ans[i][j][1]表示i点以下共走j步,回来,可能收集到最大的权值

比较复杂的是,每个节点(以下称当前节点)从其子节点转移的时候,需要用一个背包:

t[i][j][0]表示当前节点的前i个子节点共走j步,不回来
t[i][j][1]表示当前节点的前i个子节点共走j步,回来

对于t[i][j][0],要么是当前节点的前i-1个子节点共走j步(包括去和回来前面的子节点所用步数),在之前就不回来;

要么是前i-1个子节点共走j-p步(包括去和回来前面的子节点所用步数),当前节点走到第i个子节点用1步,第i个子节点向下走p-1步,不回来;

要么是花一步走到第i个子节点,在第i个子节点往下走p-2步,再花一步走回当前节点,再在前i-1个子节点中走j-p步(包括去和回来前面的子节点所用步数)并且不回来。

因此t[i][j][0]=max(t[i-1][j][0],max{t[i-1][j-p][1]+ans[nowson][p-1][0]},max{t[i-1][j-p][0]+ans[nowson][p-2][1]})

对于t[i][j][1],要么是前i-1个子节点共走j-p步(包括去和回来前面的子节点所用步数),走到第i个子节点花1步,第i个子节点向下走用p-2步并回来,从第i个子节点回来花一步;要么是前i-1个子节点共走j步(包括去和回来前面的子节点所用步数),回来。

因此t[i][j][1]=max(t[i-1][j][1],max{t[i-1][j-p][1]+ans[nowson][p-2][1]})

当然实际求解的时候并不需要每个节点开一个t数组,只需要在ans数组上直接做就行了。就是先对t数组求解过程用滚动数组优化,那么只需要两维t[j][0/1]。这时只需要把ans[当前节点]的数组当做t去做就行了。另外,求解t数组的边界要注意一下。另外,t数组再求解前就全部初始化成当前节点权值就行了。

最终答案很显然:max(ans[1][k][0],ans[1][k][1])。

曾经错误:

naive的转移方程:

t[i][j][0]=max(t[i-1][j][0],t[i-1][j-p][0],t[i-1][j-p][1]+ans[son][p][0])
t[i][j][1]=max(t[i-1][j][1],t[i-1][j-p][1]+ans[son][p][1])

事实上,这道题转移t[i][j][0]的第3种(标红的)情况很容易遗漏。另外,很容易忽略走去与走回子节点花费的1或2步。

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct Edge
{
int to,next;
}edge[];
int ne,ans[][][],f1[];
int a[];
int n,k;
bool vis[];
void dfs(int u)
{
int j,kk=f1[u],p,v;
vis[u]=true;
for(j=;j<=k;j++)
ans[u][j][]=ans[u][j][]=a[u];
while(kk!=)
{
v=edge[kk].to;
if(!vis[v])
{
dfs(v);
for(j=k;j>=;j--)
{
for(p=;p<=j;p++)
ans[u][j][]=max(ans[u][j][],max(ans[u][j-p][]+ans[v][p-][],ans[u][j-p][]+ans[v][p-][]));
for(p=;p<=j;p++)
ans[u][j][]=max(ans[u][j][],ans[u][j-p][]+ans[v][p-][]);
}
}
kk=edge[kk].next;
}
}
int main()
{
int i,ta,tb;
while(scanf("%d%d",&n,&k)==)
{
ne=;
memset(ans,,sizeof(ans));
memset(vis,,sizeof(vis));
memset(f1,,sizeof(f1));
for(i=;i<=n;i++)
scanf("%d",&a[i]);
for(i=;i<n;i++)
{
scanf("%d%d",&ta,&tb);
edge[++ne].to=tb;
edge[ne].next=f1[ta];
f1[ta]=ne;
edge[++ne].to=ta;
edge[ne].next=f1[tb];
f1[tb]=ne;
}
dfs();
printf("%d\n",max(ans[][k][],ans[][k][]));
}
return ;
}

Apple Tree POJ - 2486的更多相关文章

  1. E - Apple Tree POJ - 2486

    E - Apple Tree POJ - 2486 Wshxzt is a lovely girl. She likes apple very much. One day HX takes her t ...

  2. Apple Tree POJ - 2486 (树形dp)

    题目链接: D - 树形dp  POJ - 2486 题目大意:一颗树,n个点(1-n),n-1条边,每个点上有一个权值,求从1出发,走V步,最多能遍历到的权值 学习网址:https://blog.c ...

  3. Apple Tree POJ - 3321 dfs序列构造树状数组(好题)

    There is an apple tree outside of kaka's house. Every autumn, a lot of apples will grow in the tree. ...

  4. 【POJ 2486】 Apple Tree (树形DP)

    Apple Tree Description Wshxzt is a lovely girl. She likes apple very much. One day HX takes her to a ...

  5. 【POJ 2486】 Apple Tree(树型dp)

    [POJ 2486] Apple Tree(树型dp) Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8981   Acce ...

  6. POJ 2486 Apple Tree

    好抽象的树形DP......... Apple Tree Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6411 Accepte ...

  7. poj 2486 Apple Tree(树形DP 状态方程有点难想)

    Apple Tree Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9808   Accepted: 3260 Descri ...

  8. poj 2408 Apple Tree

    http://poj.org/problem?id=2486 典型的回溯题目:特别是状态方程用三维的来标记是否要走回路. 题意:一颗树,n个点(1-n),n-1条边,每个点上有一个权值,求从1出发,走 ...

  9. POJ - 3321 Apple Tree (线段树 + 建树 + 思维转换)

    id=10486" target="_blank" style="color:blue; text-decoration:none">POJ - ...

随机推荐

  1. Meteor check

    check方法用于检查参数或类型是否匹配模式. 安装check包 打开命令提示符窗口,并安装该软件包. C:\Users\Administrator\Desktop\meteorApp>mete ...

  2. 【机器学习具体解释】SVM解二分类,多分类,及后验概率输出

    转载请注明出处:http://blog.csdn.net/luoshixian099/article/details/51073885 CSDN−勿在浮沙筑高台 支持向量机(Support Vecto ...

  3. hdu 1879 继续畅通project

    本题链接:pid=1879http://">点击打开链接 本题大意: 输入n行数据.每行数据前两个表示该条路连通的两个村庄的编号,第三个表示修该条路的成本.最后的0或1表示该路未修或已 ...

  4. Windows 8.1更新变化

     在上个月微软公布了Windows 8.1更新(KB2919355),假设大家使用的是Windows 8.1的系统,而且启用了自己主动更新,那这个更新就会被自己主动安装.伴随着这个更新,微软同一时 ...

  5. 【转载】HTTP POST GET SOAP本质区别详解

    一 原理区别 一般在浏览器中输入网址访问资源都是通过GET方式:在FORM提交中,可以通过Method指定提交方式为GET或者POST,默认为GET提交 Http定义了与服务器交互的不同方法,最基本的 ...

  6. hdu4183往返经过至多每一个点一次/最大流

    题意:从s到t,每一个点有f值,仅仅能从f值小的到大的.到T后回来.仅仅能从f值大的到 小的,求可行否. 往返,事实上就是俩条路过去(每一个点最多一次).所以想到流量为2,跑最大流.看是否满2,又要每 ...

  7. 【Java 安全技术探索之路系列:J2SE安全架构】之二:安全管理器

    作者:郭嘉 邮箱:allenwells@163.com 博客:http://blog.csdn.net/allenwells github:https://github.com/AllenWell 一 ...

  8. NoSQL之Redis探析

    下载地址:wget http://download.redis.io/releases/redis-2.8.8.tar.gz安装steps:1 下载Official Website : http:// ...

  9. Android AR场景拍照技术实现(有关键源代码)

    ARVR技术交流群:129340649 欢迎增加. AR场景往往给别人留下的印象深刻,假设模型做的炫丽一点,效果将会更好. 那么怎样保存这一美好的情景呢?这篇文章将教你怎样实现AR场景的拍摄以及永久保 ...

  10. [IT学习]GIT 学习

    最近开始了解GIT.有一些不错的资源记录在下面: 1.GIT for teams A book about teams cooperation. 2.GIT https://learngitbranc ...