题目链接:

  Poj 3264 Balanced Lineup

题目描述:

  给出一个n个数的序列,有q个查询,每次查询区间[l, r]内的最大值与最小值的绝对值。

解题思路:

  很模板的RMQ模板题,在这里总结一下RMQ:RMQ(Range Minimum/Maximum Query) 即区间最值查询,是指这样一个问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j之间的最小/大值。

  RMQ有三种求法:1:直接遍历查找,炒鸡暴力;

           2:线段树也可以解决这一类问题;

           3:ST(Sparse Table)算法:在线处理RMQ问题,可以做到O(n*log(n))内预处理,O(1)内查询到所要结果。

  对于ST(Sparse Table)算法,预处理的时候用的是DP思想,用一个二维数组dp[i][j]记录区间[i,i+2^j-1] (持续2^j个)区间中的最小值(其中dp[i,0] = a[i])

  对于任意的一组(i,j),dp[i][j] = min{dp[i][j-1],dp[i+2^(j-1)][j-1]}来使用动态规划计算出来。最优美的地方还在与查询的时候,对于区间[m, n],可以找到一个k,k满足 n-m+1 < 2^(k+1),然后ans = min {dp[m][m+2^k-1],  [n-2^k+1][n]},区间[m,m+2^k-1]和[n-2^k+1,n]内的最值我们是预处理过的,所以在O(1)的时间内就可以找到ans咯。

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; const int maxn = ;
int dmin[maxn][], dmax[maxn][];
int arr[maxn]; void RMQ_init (int n)
{
for (int i=; i<n; i++)
dmin[i][] = dmax[i][] = arr[i]; for (int j=; (<<j)<=n; j++)
for (int i=; i+(<<j)-<n; i++)
{
dmin[i][j] = min (dmin[i][j-], dmin[i+(<<(j-))][j-]);
dmax[i][j] = max (dmax[i][j-], dmax[i+(<<(j-))][j-]);
}
}
int solve (int a, int b)
{
int x = ;
while (<<(x+) <= b-a+) x++;
int Max = max (dmax[a][x], dmax[b-(<<x)+][x]);
int Min = min (dmin[a][x], dmin[b-(<<x)+][x]);
return Max - Min;
} int main ()
{
int n, q, a, b;
while (scanf ("%d %d", &n, &q) != EOF)
{
for (int i=; i<n; i++)
scanf ("%d", &arr[i]);
RMQ_init( n );
while (q --)
{
scanf ("%d %d", &a, &b);
printf ("%d\n", solve(a-, b-));
}
}
return ;
}

Poj 3264 Balanced Lineup RMQ模板的更多相关文章

  1. POJ 3264 Balanced Lineup(模板题)【RMQ】

    <题目链接> 题目大意: 给定一段序列,进行q次询问,输出每次询问区间的最大值与最小值之差. 解题分析: RMQ模板题,用ST表求解,ST表用了倍增的原理. #include <cs ...

  2. poj 3264 Balanced Lineup (RMQ)

    /******************************************************* 题目: Balanced Lineup(poj 3264) 链接: http://po ...

  3. POJ - 3264 Balanced Lineup (RMQ问题求区间最值)

    RMQ (Range Minimum/Maximum Query)问题是指:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j里的最小(大)值,也就 ...

  4. poj 3264 Balanced Lineup (RMQ算法 模板题)

    RMQ支持操作: Query(L, R):  计算Min{a[L],a[L+1], a[R]}. 预处理时间是O(nlogn), 查询只需 O(1). RMQ问题 用于求给定区间内的最大值/最小值问题 ...

  5. POJ 3264 Balanced Lineup -- RMQ或线段树

    一段区间的最值问题,用线段树或RMQ皆可.两种代码都贴上:又是空间换时间.. RMQ 解法:(8168KB 1625ms) #include <iostream> #include < ...

  6. POJ 3264 Balanced Lineup RMQ ST算法

    题意:有n头牛,编号从1到n,每头牛的身高已知.现有q次询问,每次询问给出a,b两个数.要求给出编号在a与b之间牛身高的最大值与最小值之差. 思路:标准的RMQ问题. RMQ问题是求给定区间内的最值问 ...

  7. POJ 3264 Balanced Lineup 【ST表 静态RMQ】

    传送门:http://poj.org/problem?id=3264 Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total S ...

  8. POJ 3264 Balanced Lineup(RMQ)

    点我看题目 题意 :N头奶牛,Q次询问,然后给你每一头奶牛的身高,每一次询问都给你两个数,x y,代表着从x位置上的奶牛到y位置上的奶牛身高最高的和最矮的相差多少. 思路 : 刚好符合RMQ的那个求区 ...

  9. poj 3264 Balanced Lineup(RMQ裸题)

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 43168   Accepted: 20276 ...

随机推荐

  1. 碧砚适合佳能328 4452 ICD520 4472 4450 硒鼓4700一体机墨盒4770

  2. java去空格

    1.trim()是去掉首尾空格    2.str.replace(" ", ""); 去掉所有空格,包括首尾.中间    3.或者replaceAll(&quo ...

  3. datasnap使用ipv6

    有些人说DATASNAP不支持IPv6,只支持IPv4. 这是不正确的. DATASNAP默认是使用IPv4在ipv6 环境下 怎样用datasnap?Params.Values['Communica ...

  4. Defcon 23最新开源工具NetRipper代码分析与利用

    0×01 研究背景 在分析了俄罗斯人被曝光的几个银行木马的源码后,发现其大多均存在通过劫持浏览器数据包来获取用户个人信息的模块,通过截获浏览器内存中加密前或解密后的数据包来得到数据包的明文数据.在De ...

  5. hdu 4599 Dice

    数学能力已经彻底降低到了小学水平,真是惨啊惨... 首先G(M)很容易确定,G(M) = 6 * M; H(N) = 6 * F(N),于是推出来H(N)就可以了,昨天请教了一下别人,直接数学公式搞定 ...

  6. Redis 入门指南

    就是DBIdx

  7. python实现接口自动化

    一.总述 Postman:功能强大,界面好看响应格式自主选择,缺点支持的协议单一且不能数据分离,比较麻烦的还有不是所有的公司都能上谷歌SoupUI:支持多协议(http\soup\rest等),能实现 ...

  8. 论持久战之PHPStorm Xdebug Remote 调试环境搭建(不依赖本地环境)

    最近公司自己搭建了一个资源管理平台,哈哈,当然是我在github上找的,后台用PHP开发.个人觉得写得非常nice,web页面几乎模拟了真实OS,有兴趣的朋友下载部署体验https://github. ...

  9. Java使用三种不同循环结构对1+2+3+...+100 求和

    ▷//第一种求法,使用while结构 /** * @author 9527 * @since 19/6/20 */ public class Gaosi { public static void ma ...

  10. adb端口被占用情况下如何杀掉进程

    1.CMD命令窗口输入:adb nodaemon server .然后就会提示你哪个端口被占用了. 2.输入netstat -ano | findstr "5037" .然后会弹出 ...