洛谷——P2261 [CQOI2007]余数求和
P2261 [CQOI2007]余数求和
关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$
简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\times k)$
$=n*k-\sum_{i=1}^{n}\frac{k}{i}\times k$
$⌊ \frac{m}{k}⌋$ 共有 $O( √ m)$ 种取值,直接计算。总时间复杂度 $O( √ m)$
观察下图:

你会发现$\frac{k}{i}$是有规律的,或者说相同的紧挨着,分布在同一个块中
确定$\frac{k}{i}$取值相同的区间$[l,r]$,$r=min(n,k/(k/l))$
$k/l$代表这一部分的取值,$k/(k/l)$就是区间的右端点
确定了区间,那么根据等差数列求和公式$\frac{(S1+Sn)\times n}{2}$
#include<bits/stdc++.h> #define LL long long
using namespace std; LL n,k; int main()
{
scanf("%lld%lld",&n,&k);
LL ans=n*k;
for(LL l=,r;l<=n;l=r+){
if(k/l!=) r=min(k/(k/l),n);
else r=n;
ans-=(k/l)*(r-l+)*(l+r)/;
} printf("%lld\n",ans); return ;
}
洛谷——P2261 [CQOI2007]余数求和的更多相关文章
- 洛谷 P2261 [CQOI2007]余数求和 解题报告
P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...
- [洛谷P2261] [CQOI2007]余数求和
洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...
- 洛谷P2261 [CQOI2007] 余数求和 [数论分块]
题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...
- 洛谷 P2261 [CQOI2007]余数求和
洛谷 一看就知道是一个数学题.嘿嘿- 讲讲各种分的做法吧. 30分做法:不知道,这大概是这题的难点吧! 60分做法: 一是直接暴力,看下代码吧- #include <bits/stdc++.h& ...
- 洛谷 P2261 [CQOI2007]余数求和 ||整除(数论)分块
参考:题解 令f(i)=k%i,[p]表示不大于p的最大整数f(i)=k%i=k-[k/i]*i令q=[k/i]f(i)=k-qi如果k/(i+1)=k/i=qf(i+1)=k-q(i+1)=k-qi ...
- 【洛谷P2261】余数求和
题目大意:给定 n, k,求\(\sum\limits_{i=1}^n k\%n\) 的值. 题解:除法分块思想的应用. \(x\%y=x-y\lfloor {x\over y}\rfloor\),因 ...
- 洛谷 2261 [CQOI2007]余数求和
题目戳这里 一句话题意 求 \(\sum_{i=1}^{n} (k ~~\texttt{mod} ~~i)\) Solution 30分做法: 说实话并不知道怎么办. 60分做法: 很明显直接一遍o( ...
- [Luogu P2261] [CQOI2007]余数求和 (取模计算)
题面 传送门:https://www.luogu.org/problemnew/show/P2261 Solution 这题显然有一个O(n)的直接计算法,60分到手. 接下来我们就可以拿出草稿纸推一 ...
- P2261 [CQOI2007]余数求和 【整除分块】
一.题面 P2261 [CQOI2007]余数求和 二.分析 参考文章:click here 对于整除分块,最重要的是弄清楚怎样求的分得的每个块的范围. 假设$ n = 10 ,k = 5 $ $$ ...
随机推荐
- go11---方法method
package main /* 方法method Go 中虽没有class,但依旧有method 通过显示说明receiver来实现与某个类型的组合 只能为同一个包中的类型定义方法 Receiver ...
- bzoj4868
http://www.lydsy.com/JudgeOnline/problem.php?id=4868 三分+贪心 我们可以知道这是一个单峰函数 当A>B那么我们每次调整一个的价钱是最佳的,所 ...
- nodejs实现验证码
http://www.9958.pw/post/nodejs_lesson http://www.9958.pw/post/nodejscapp
- bzoj 1628: [Usaco2007 Demo]City skyline【贪心+单调栈】
还以为是dp呢 首先默认答案是n 对于一个影子,如果前边的影子比它高则可以归进前面的影子,高处的一段单算: 和他一样高的话就不用单算了,ans--: 否则入栈 #include<iostream ...
- svg image 图片无法铺满 circle 的问题解决
引子 使用d3.js绘制了力布图后,需要在circle中绘制图片,方法如下: // 绘制图片 drawPattern(gContainer) { let that = this; let gPatte ...
- sourcetree跳过注册方法
很人用git命令行不熟练,那么可以尝试使用sourcetree进行操作. 然鹅~~sourcetree又一个比较严肃的问题就是,很多人不会跳过注册或者操作注册. 废话不多,我们直接开始跳过注册阶段的操 ...
- 从实际案例聊聊Java应用的GC优化--转
https://tech.meituan.com/jvm_optimize.html 当Java程序性能达不到既定目标,且其他优化手段都已经穷尽时,通常需要调整垃圾回收器来进一步提高性能,称为GC优化 ...
- SQL Split函数,将一串字符串返回成table
写法一: CREATE FUNCTION [dbo].[Split] ( @str VARCHAR(MAX), --传进来的字符串 ) --分割符 ) RETURNS @t TABLE --定义一个虚 ...
- A8ERP权限管理系统
- 简单谈谈MySQL中的int(m)
转载地址:https://www.jb51.net/article/93760.htm 设置int型的时候,需要设置int(M),以前知道这个M最大是255,但是到底应该设置多少并没有在意.注意zer ...