t


Grid Convergence Index

1 Grid/mesh independence   GCI

keywords: Richardson's extrapolation, Grid convergence index a summary of Richardson's extrapolation is here

requirement: GCI < 5%

a summary of GCI from nasa web , local downloaded file is here ( print version is in BEM file folder)

1.1 Richardson extrapolation

1.2 grid refinement ratio

  • Hexa mesh –>> grid refinement ratio

    • double nodes along each coordinates (x, y,z)
  • Tetra mesh –>> effective grid refinement ratio

Definitions:

\[ r_{ij} = h_i/h_j \]

  • r: grid refinement ratio,
  • h: grid spacing
  1. effective grid refinement ratio

    For tetra mesh, the effective grid refinement ratio is defined as:

    \begin{equation}
    r_e =( \frac{N_1}{N_2})
    ^{1/D}
    \end{equation}

    Where \( N \) is the total number of grid point and \( D \) is the dimension of the flow domain.

1.3 Example of Grid convergence study

The example is from here,
The Fortran 90 program verify.f90 was written to carry out the calculations associated with a grid convergence study involving 3 or more grids
The program is compiled on a unix system through the commands:

f90 verify.f90 -o verify

It reads in an ASCII file (prD.do) through the standard input unit (5) that contains a list of pairs of grid size and value of the observed quantity f.

input data format:
1.0 0.97050 2.0 0.96854 4.0 0.96178
verify < prD.do > prD.out

It assumes the values from the finest grid are listed first. The output is then written to the standard output unit (6) prD.out.
The output from the of {\tt verify} for the results of Appendix A are:

#+BEGINEXAMPLE

— VERIFY: Performs verification calculations —

Number of data sets read = 3

Grid Size Quantity

1.000000 0.970500
2.000000 0.968540
4.000000 0.961780

Order of convergence using first three finest grid
and assuming constant grid refinement (Eqn. 5.10.6.1)
Order of Convergence, p = 1.78618479

Richardson Extrapolation: Use above order of convergence
and first and second finest grids (Eqn. 5.4.1)
Estimate to zero grid value, fexact = 0.971300304

Grid Convergence Index on fine grids. Uses p from above.
Factor of Safety = 1.25

Grid Refinement
Step Ratio, r GCI(%)
1 2 2.000000 0.103080
2 3 2.000000 0.356244

Checking for asymptotic range using Eqn. 5.10.5.2.
A ratio of 1.0 indicates asymptotic range.

Grid Range Ratio
12 23 0.997980

— End of VERIFY —

#+END _EXAMPLE

1.4 calculation steps

  1. Complete at least 3 simulations (Coarse, medium, fine) with a constant refinement ratio, r, between them (in our example we use r=2)
  2. Choose a parameter indicative of grid convergence. In most cases, this should be the parameter you are studying. ie if you are studying drag, you would use drag.
  3. Calculate the order of convergence, p, using:

\begin{equation}
p=ln(\frac{f_3 - f_2}{f_2- f_1}) / \ln (r)
\end{equation}

where \( f_i \) is the solution at different meshes, f1 is fine grid, \( r \) is grid refinement ratio.

  1. Perform a Richardson extrapolation to predict the value at h=0

\begin{equation}
f_e = f_1 + \frac{f_1 -f_2 }{r^p - 1}
\end{equation}

fe, exact numerical value ( continuum value at zero grid spacing)

  1. Calculate grid convergence index (GCI) for the medium and fine refinement levels

\begin{equation}
GCI_{fine} = \frac{F_s \vert \epsilon \vert }{r^p - 1}
\end{equation}

where \( F_s \) is a safety factor. the recommended value is 3 for two grids comparisons and 1.25 for three or more grids comparisons.

  1. Ensure that grids are in the asymptotic range of convergence by checking:
    \frac{GCI2,3}{rp × GCI1,2} \approxeq 1

1.6 References

Roache, P. J. Perspective: A Method for Uniform Reporting of Grid Refinement Studies, Journal of Fluids Engineering, Vol. 116, 1994; 405-413.

Roache, P. J. Quantification of Uncertainty in Computational Fluid Dynamics, in Annual Review of Fluid Mechanics

Roache, Patrick J. Verification and validation in computational science and engineering. Vol. 895. Albuquerque, NM: Hermosa, 1998.

Author: kaiming

Created: 2019-04-16 Tue 22:15

Emacs 24.5.1 (Org mode 8.2.10)

Validate

Grid Convergence Index-- Post Processing in CFD的更多相关文章

  1. post processing in CFD

    post post Table of Contents 1. Post-processing 1.1. Reverse flow 1.1.1. reasons 1.1.2. solutions 1.2 ...

  2. WPF CheckBox样式 ScrollViewer样式 WrapPanel、StackPanel、Grid布局

    本节讲述布局,顺带加点样式给大家看看~单纯学布局,肯定是枯燥的~哈哈 那如上界面,该如何设计呢? 1.一些布局元素经常用到.Grid StackPanel Canvas WrapPanel等.如上这种 ...

  3. Ext.GridPanel 用法总结(一)—— Grid基本用法

    Ext.GridPanel 用法总结(一)—— Grid基本用法 摘自:http://www.cnblogs.com/luluping/archive/2009/08/01/1536645.html ...

  4. WPF Grid布局

    本节讲述布局,顺带加点样式给大家看看~单纯学布局,肯定是枯燥的~哈哈 那如上界面,该如何设计呢? 1.一些布局元素经常用到.Grid StackPanel Canvas WrapPanel等.如上这种 ...

  5. LigerUi中表(Grid)控件的相关属性笔记

    http://blog.csdn.net/dxnn520/article/details/8216560 // ========================================= [每 ...

  6. {ICIP2014}{收录论文列表}

    This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...

  7. ArcGIS空间分析工具

    1. 3D分析 1.1. 3D Features toolset 工具 工具 描述 3D Features toolset (3D 要素工具集) Add Z Information 添加 Z 信息 添 ...

  8. 【转载】XGBoost调参

    General Parameters: Guide the overall functioning Booster Parameters: Guide the individual booster ( ...

  9. xgboost调参

    The overall parameters have been divided into 3 categories by XGBoost authors: General Parameters: G ...

随机推荐

  1. [loj6089]小Y的背包计数问题

    https://www.zybuluo.com/ysner/note/1285358 题面 小\(Y\)有一个大小为\(n\)的背包,并且小\(Y\)有\(n\)种物品. 对于第\(i\)种物品,共有 ...

  2. SYSUCPC2017 1007 Tutu’s Array II

    题目大意:有A个0和B个1,每次取两个出来进行{XNOR,NAND,NOR}操作生成一个新的0/1,直到只剩一个元素.问最后是否可能剩下一个0,是否可能剩下一个1. XNOR 比较特殊 a XNOR ...

  3. SVN导出指定版本差异文件 ***

    当一个项目进入运营维护阶段以后,不会再频繁地更新全部源文件到服务器,这个时间的修改大多是局部的,因此更新文件只需更新修改过的文件,其他 没有修改过的文件就没有必要上载到服务器.但一个稍微上规模的项目文 ...

  4. C#面向过程之冒泡排序

    //定义一个数组,准备冒泡排序 ,,-,,,,-,}; //定义一个中间变量 ; //n个数字比较需要进行n-1次比较 ; j < arr.Length - - i; j++) { //每一趟的 ...

  5. 常用的八大排序算法,含java实例(copy)

    说明:转载于http://www.cnblogs.com/qqzy168/archive/2013/08/03/3219201.html 分类: 1)插入排序(直接插入排序.希尔排序) 2)交换排序( ...

  6. ODP.NET Managed 相关文章收集

      一.Oracle 对.net支持的一些基础知识了解介绍. 1.早年的时候,微软自己做的有 System.Data.OracleClient. 现在已经成了过期类了.性能等都不是很好. 2.Orac ...

  7. 【题解】二逼平衡树 [P3380] [BZOJ3196] [Tyvj1730]

    [题解]二逼平衡树 [P3380] [BZOJ3196] [Tyvj1730] 传送门:[模板]二逼平衡树(树套树)\([P3380]\) \([BZOJ3196]\) \([TYVJ1730]\) ...

  8. SPFA+Dinic HDOJ 5294 Tricks Device

    题目传送门 /* 题意:一无向图,问至少要割掉几条边破坏最短路,问最多能割掉几条边还能保持最短路 SPFA+Dinic:SPFA求最短路时,用cnt[i]记录到i最少要几条边,第二个答案是m - cn ...

  9. 几个不同的tab切换示例

    上一篇<论tab切换的几种实现方法>中讲了tab切换的4种不同实现原理,那么,现在到理论联系实际的时候了,下面就写几个实例. 一.仿”中国人民大学“官网的tab切换,背景是图片,效果图如下 ...

  10. 不讲CRUSH的Ceph教程是不完整的

    前面我们提到了Ceph是一个支持统一存储架构的分布式存储服务.简单介绍了Ceph的基本概念和基础架构包含的组件,其中最重要的就是底层的RADOS和它的两类守护进程OSD and Monitor.上篇文 ...