Layout
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 12522   Accepted: 6032

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).

Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD.

Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.

Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

Hint

Explanation of the sample:

There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.

The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

Source

题意:

我认为题意英文正常的都可以看的懂吧。

就是奶牛排队,一个地方可以容纳许多奶牛,

奶牛有互相喜欢的和互相讨厌的,

  先输入喜欢的,1号3号相互喜欢,距离不能超过10

  2和4不能超过20,2,3不能小于3

  对于喜欢输入A,B,C

  就是说d[B]-d[A]<=C;

  转化为,d[B]<=C+d[A];

  求最多,用最短路,下面也需要化成形式一致的才可以。

  不能忘了d[i]-d[i-1]>=0这个限制。

 #include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<queue>
#define INF 2000000007
#define N 1007
#define M 10007
using namespace std; int n,l,r;
int dis[N],num[N],ins[N];
int cnt,head[N],next[M*],rea[M*],val[M*]; void add(int u,int v,int fee)
{
next[++cnt]=head[u];
head[u]=cnt;
rea[cnt]=v;
val[cnt]=fee;
}
bool Spfa()
{
for (int i=;i<=n;i++)
ins[i]=,dis[i]=INF,num[i]=;
queue<int>q;
q.push();dis[]=,num[]=;
while(!q.empty())
{
int u=q.front();q.pop();
for (int i=head[u];i!=-;i=next[i])
{
int v=rea[i],fee=val[i];
if (dis[v]>dis[u]+fee)
{
dis[v]=dis[u]+fee;
if (!ins[v])
{
num[v]++;
ins[v]=;
q.push(v);
if (num[v]>n) return false;
}
}
}
ins[u]=;
}
return true;
}
int main()
{
memset(head,-,sizeof(head));
scanf("%d%d%d",&n,&l,&r);
for (int i=,x,y,z;i<=l;i++)
{
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
}
for (int i=,x,y,z;i<=r;i++)
{
scanf("%d%d%d",&x,&y,&z);
add(y,x,-z);
}
for (int i=;i<=n;i++)
add(i+,i,);
bool flag=Spfa();
if (!flag) printf("-1\n");
else
{
if (dis[n]==INF) printf("-2\n");
else printf("%d\n",dis[n]);
}
}

POJ3169 差分约束 线性的更多相关文章

  1. POJ 3169 Layout(差分约束 线性差分约束)

    题意: 有N头牛, 有以下关系: (1)A牛与B牛相距不能大于k (2)A牛与B牛相距不能小于k (3)第i+1头牛必须在第i头牛前面 给出若干对关系(1),(2) 求出第N头牛与第一头牛的最长可能距 ...

  2. POJ3169(差分约束:转载)

    转载自mengxiang000000传送门 Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10278   Ac ...

  3. POJ-3169 Layout (差分约束+SPFA)

    POJ-3169 Layout:http://poj.org/problem?id=3169 参考:https://blog.csdn.net/islittlehappy/article/detail ...

  4. [USACO2005][POJ3169]Layout(差分约束)

    题目:http://poj.org/problem?id=3169 题意:给你一组不等式了,求满足的最小解 分析: 裸裸的差分约束. 总结一下差分约束: 1.“求最大值”:写成"<=& ...

  5. poj3169 最短路(差分约束)

    题意:一个农夫有n头牛,他希望将这些牛按照编号 1-n排成一条直线,允许有几头牛站在同一点,但是必须按照顺序,有一些牛关系比较好,希望站的距离不超过某个值,而有一些牛关系不太好,所以希望站的距离大于等 ...

  6. 【POJ3169 】Layout (认真的做差分约束)

    Layout   Description Like everyone else, cows like to stand close to their friends when queuing for ...

  7. 【poj3169】【差分约束+spfa】

    题目链接http://poj.org/problem?id=3169 题目大意: 一些牛按序号排成一条直线. 有两种要求,A和B距离不得超过X,还有一种是C和D距离不得少于Y,问可能的最大距离.如果没 ...

  8. POJ3169:Layout(差分约束)

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 15705   Accepted: 7551 题目链接:http ...

  9. POJ 3159 Candies(差分约束+最短路)题解

    题意:给a b c要求,b拿的比a拿的多但是不超过c,问你所有人最多差多少 思路:在最短路专题应该能看出来是差分约束,条件是b - a <= c,也就是满足b <= a + c,和spfa ...

随机推荐

  1. Service官方教程(11)Bound Service示例之2-AIDL 定义跨进程接口并通信

    Android Interface Definition Language (AIDL) 1.In this document Defining an AIDL Interface Create th ...

  2. Android Dialogs(2)最好用DialogFragment创建Dialog

    Creating a Dialog Fragment You can accomplish a wide variety of dialog designs—including custom layo ...

  3. java中实参与形参的概念

    形参: public void fun(形参类型 形参名){ ... } 实参: public static void main(String[] args){ 类 对象名=new 类(); 对象名. ...

  4. oracle (DBaaS) 服务介绍

    转 https://oracle-base.com/articles/vm/oracle-cloud-database-as-a-service-dbaas-create-service?utm_so ...

  5. jsp中提示修改成功

    修改成功提示 servert包 request.setAttribute("success", "修改失败"); 效果而 function f(){ var n ...

  6. SCANF输入错误

    while((a<=0||a>=10)||(b<=0||b>=10))    {        fflush(stdin);        cout<<" ...

  7. CCF|碰撞的小球

    import java.util.Scanner; public class Main { public static void main (String[] args) { Scanner scan ...

  8. MAC加域重复跳出---"talagent"想使用“本地项目” 的钥匙串

    很简单的解决办法,就是把以前的钥匙串给删掉就好 (重要提示:这个方法,以前所有程序自动记录密码都会丢掉,safari的自动填充,QQ自动登录,imessages 的等等) 1.打开Finder -&g ...

  9. ES6特性的两点分析

    块级作用域声明let.constES6中const 和let的功能,转换为ES5之后,我们会发现实质就是在块级作用改变一下变量名,使之与外层不同.ES6转换前: let a1 = 1; let a2 ...

  10. codeforces_1066_B.Heaters

    题意:一个数组只含有0或1,1表示该元素可以覆盖其自身.左边r-1个元素和右边r-1个元素,问最少保留多少个1元素可以覆盖整个数组. 思路:一个指针指向当前未被覆盖的最左边的元素下标,每次找离它最远且 ...