Layout
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 12522   Accepted: 6032

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).

Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD.

Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.

Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

Hint

Explanation of the sample:

There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.

The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

Source

题意:

我认为题意英文正常的都可以看的懂吧。

就是奶牛排队,一个地方可以容纳许多奶牛,

奶牛有互相喜欢的和互相讨厌的,

  先输入喜欢的,1号3号相互喜欢,距离不能超过10

  2和4不能超过20,2,3不能小于3

  对于喜欢输入A,B,C

  就是说d[B]-d[A]<=C;

  转化为,d[B]<=C+d[A];

  求最多,用最短路,下面也需要化成形式一致的才可以。

  不能忘了d[i]-d[i-1]>=0这个限制。

 #include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<queue>
#define INF 2000000007
#define N 1007
#define M 10007
using namespace std; int n,l,r;
int dis[N],num[N],ins[N];
int cnt,head[N],next[M*],rea[M*],val[M*]; void add(int u,int v,int fee)
{
next[++cnt]=head[u];
head[u]=cnt;
rea[cnt]=v;
val[cnt]=fee;
}
bool Spfa()
{
for (int i=;i<=n;i++)
ins[i]=,dis[i]=INF,num[i]=;
queue<int>q;
q.push();dis[]=,num[]=;
while(!q.empty())
{
int u=q.front();q.pop();
for (int i=head[u];i!=-;i=next[i])
{
int v=rea[i],fee=val[i];
if (dis[v]>dis[u]+fee)
{
dis[v]=dis[u]+fee;
if (!ins[v])
{
num[v]++;
ins[v]=;
q.push(v);
if (num[v]>n) return false;
}
}
}
ins[u]=;
}
return true;
}
int main()
{
memset(head,-,sizeof(head));
scanf("%d%d%d",&n,&l,&r);
for (int i=,x,y,z;i<=l;i++)
{
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
}
for (int i=,x,y,z;i<=r;i++)
{
scanf("%d%d%d",&x,&y,&z);
add(y,x,-z);
}
for (int i=;i<=n;i++)
add(i+,i,);
bool flag=Spfa();
if (!flag) printf("-1\n");
else
{
if (dis[n]==INF) printf("-2\n");
else printf("%d\n",dis[n]);
}
}

POJ3169 差分约束 线性的更多相关文章

  1. POJ 3169 Layout(差分约束 线性差分约束)

    题意: 有N头牛, 有以下关系: (1)A牛与B牛相距不能大于k (2)A牛与B牛相距不能小于k (3)第i+1头牛必须在第i头牛前面 给出若干对关系(1),(2) 求出第N头牛与第一头牛的最长可能距 ...

  2. POJ3169(差分约束:转载)

    转载自mengxiang000000传送门 Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10278   Ac ...

  3. POJ-3169 Layout (差分约束+SPFA)

    POJ-3169 Layout:http://poj.org/problem?id=3169 参考:https://blog.csdn.net/islittlehappy/article/detail ...

  4. [USACO2005][POJ3169]Layout(差分约束)

    题目:http://poj.org/problem?id=3169 题意:给你一组不等式了,求满足的最小解 分析: 裸裸的差分约束. 总结一下差分约束: 1.“求最大值”:写成"<=& ...

  5. poj3169 最短路(差分约束)

    题意:一个农夫有n头牛,他希望将这些牛按照编号 1-n排成一条直线,允许有几头牛站在同一点,但是必须按照顺序,有一些牛关系比较好,希望站的距离不超过某个值,而有一些牛关系不太好,所以希望站的距离大于等 ...

  6. 【POJ3169 】Layout (认真的做差分约束)

    Layout   Description Like everyone else, cows like to stand close to their friends when queuing for ...

  7. 【poj3169】【差分约束+spfa】

    题目链接http://poj.org/problem?id=3169 题目大意: 一些牛按序号排成一条直线. 有两种要求,A和B距离不得超过X,还有一种是C和D距离不得少于Y,问可能的最大距离.如果没 ...

  8. POJ3169:Layout(差分约束)

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 15705   Accepted: 7551 题目链接:http ...

  9. POJ 3159 Candies(差分约束+最短路)题解

    题意:给a b c要求,b拿的比a拿的多但是不超过c,问你所有人最多差多少 思路:在最短路专题应该能看出来是差分约束,条件是b - a <= c,也就是满足b <= a + c,和spfa ...

随机推荐

  1. E. The Values You Can Make 背包,同时DP

    http://codeforces.com/problemset/problem/688/E 题目需要在n个数中找出一个集合,使得这个集合的和为val,然后问这些所有集合,能产生多少个不同的和值. 题 ...

  2. C. Hongcow Builds A Nation 并查集

    http://codeforces.com/contest/745/problem/C 把他们并查集后, 其他没有连去government的点,全部放去同一个并查集,然后选择一个节点数最多的gover ...

  3. 理解http浏览器的协商缓存和强制缓存

    阅读目录 一:浏览器缓存的作用是什么? 二:理解协商缓存 1 Last-Modified/if-Modify-Since 2 ETag/if-None-Match 三:理解强制缓存 回到顶部 一:浏览 ...

  4. WindowForm.计算器

    设计计算器: 外部变量: 数字键按钮: 运算符按钮事件代码: 清零按钮 等号按钮: 思维导图:

  5. 移动web开发基础(二)——viewport

    本文主要研究为什么移动web开发需要设置viewport,且一般设置为<meta name="viewport" content="width=device-wid ...

  6. JS操作CSS

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  7. pycharm一些快捷键(不定时添加)

    ctrl + shift + -  缩减多级菜单 ctrl + shifit + + 展开多级菜单 ctrl + shift + F8  删除多个断点 两个项目比较 ---选中要比较的项目---右键找 ...

  8. 微信“摇一摇&#183;周边”正式开放

    今日,在微信公开课第三季长沙站现场,微信团队宣布“摇一摇·周边”(以下简称“摇周边”)正式对外开放.拥有微信认证的公众帐号商户,均可通过摇周边的商户申请平台(https://zb.weixin.qq. ...

  9. Python学习 Day 1-简介 安装 Hello world

    简介 Python(英语发音:/ˈpaɪθən/), 是一种面向对象.解释型计算机程序设计语言,由Guido van Rossum于1989年底发明,第一个公开发行版发行于1991年,Python 源 ...

  10. Android(java)学习笔记191:ContentProvider使用之利用ContentProvider备份和还原手机短信(掌握)

    1. 通过阅读系统源码我们知道: 短信的内容提供者: content://sms/            系统短信的内容提供者的路径 2. 利用ContentProvider备份和还原手机短信: (1 ...