决策树优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据;

决策树缺点:可能会产生过度匹配问题。

决策树的一般步骤:

(1)代码中def 1,计算给定数据集的香农熵:

其中n为类别数,D为数据集,每行为一个样本,p表示当前样本集合D中第k类样本所占的比例,Ent(D)越小,D的纯度越高,即表示D中样本大部分属于同一类;反之,D的纯度越低,即数据集D中的类别数比较多。

(2)代码中def 2,选择最好的数据集划分方式,即选择信息增益最大的属性:

其中

这里V表示属性a的可能的取值数,Dv表示属性a上取值为av的样本。

(3)代码中 def 3,按照给定特征划分数据集:选取最优属性后,再从属性的各个取值中选取最优的属性,以此类推。

(4)代码中def 5,递归构造树,数的结束标志为:a、类别完全相同则停止划分;b、代码中def 4,如果数据集已经处理了所有属性,但是类标签依然不是唯一的,此时采用多数表决法,即遍历完所有特征时返回出现次数最多的类别。

from math import log

# 计算数据集的信息熵,熵越小,说明数据集的纯度越高
def calcShannonEnt(dataset): # def 1
numEntries = len(dataset) # 样本数,这里的dataSet是列表
labelCounts = {} #定义一个字典,key为类别,值为类别数
for featVec in dataset: # 统计各个类别的个数
currentLabel = featVec[-1]
if currentLabel not in labelCounts.keys():
labelCounts[currentLabel] = 0
labelCounts[currentLabel] += 1
shannonEnt = 0.0 # 信息熵
for key in labelCounts:
prob = float(labelCounts[key])/numEntries
shannonEnt -= prob * log(prob,2)
return shannonEnt # 信息熵 # 选出最好的数据集划分方式,即找出具有最大信息增益的特征
def chooseBestFeatureToSplit(dataSet): #def 2
numFeatures = len(dataSet[0])-1 # 特征数
baseEntropy = calcShannonEnt(dataSet) #计算数据集的香农熵
bestInfoGain = 0.0; bestFeature = -1
for i in range(numFeatures):
featList = [example[i] for example in dataSet] #第i列特征的所有特征的取值
uniqueVals = set(featList) # 去掉重复的特征,每个特征值都是唯一的
newEntropy = 0.0
for value in uniqueVals:
subDataSet = splitDataSet(dataSet,i,value)
prob = len(subDataSet)/float(len(dataSet))
newEntropy += prob * calcShannonEnt(subDataSet)
infoGain = baseEntropy - newEntropy # 表示属性为value的信息增益
if (infoGain > bestInfoGain):
bestInfoGain = infoGain
bestFeature = i
return bestFeature # 具有最大信息增益的特征 # 按照给定特征维数划分数据集,数据集中一行为一个样本
# def 3
def splitDataSet(dataSet,axis,value): # axis可表示数据集的列,也就是特征为数,value表示特征的取值
retDataSet = []
for featVec in dataSet:
if featVec[axis] == value:
reducedFeatVec = featVec[:axis] # 在数据集中去掉axis这一列
reducedFeatVec.extend(featVec[axis+1:])
retDataSet.append(reducedFeatVec)
return retDataSet # 表示去掉在axis中特征值为value的样本后而得到的数据集 # 当处理了所有属性,但是类标签依然不是唯一的,此时采用多数表决法决定该叶子节点的分类
def majorityCnt(classList): # def 4
classCount = {}
for vote in classList:
if vote not in classCount.keys():
classCount[vote] = 0
classCount += 1
sortedClassCount = sorted(classCount.items(),key=lambda classCount: classCount[1],reverse = True)
return sortedClassCount[0][0] # 创建树
def createTree(dataSet,labels): # def 5
classList = [example[-1] for example in dataSet] #类别列表
if classList.count(classList[0]) == len(classList): # 如果类别完全相同就停止划分
return classList[0]
if (len(dataSet[0]) == 1):
return majorityCnt(classList)
bestFeat = chooseBestFeatureToSplit(dataSet) # 选出最好的特征,也就是信息增益最大的特征
bestFeatLabel = labels[bestFeat]
myTree = {bestFeatLabel:{}}
del(labels[bestFeat]) # 每划分一层,特征数目就会较少
featValues = [example[bestFeat] for example in dataSet] # 最好的特征的特征值
uniqueVals = set(featValues) #去掉重复的特征
for value in uniqueVals:
subLabels = labels[:] # 减少后的特征名
myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet,bestFeat,value),subLabels)
return myTree def createDateSet():
dataSet = [[1,1,'yes'],[1,1,'yes'],[1,0,'no'],[0,1,'no'],[0,1,'no']]
labels = ['no surfacing','flippers'] #属性名
return dataSet,labels myData,myLabel = createDateSet()
createTree(myData,myLabel)
print(createTree(myData,myLabel))
#print(chooseBestFeatureToSplit(myData))
# print(splitDataSet(myData,0,1))
# print(splitDataSet(myData,0,0))

机器学习_决策树Python代码详解的更多相关文章

  1. 机器学习_K近邻Python代码详解

    k近邻优点:精度高.对异常值不敏感.无数据输入假定:k近邻缺点:计算复杂度高.空间复杂度高 import numpy as npimport operatorfrom os import listdi ...

  2. 520表白小程序设计Python代码详解(PyQt5界面,B站动漫风)

    摘要:介绍一个动漫风的表白小程序,界面使用Python以及PyQt实现,界面样式经过多次美化调整,使得整体清新美观.本文详细介绍代码设计和实现过程,不仅是居家表白必备,而且适合新入门的朋友学习界面设计 ...

  3. python golang中grpc 使用示例代码详解

    python 1.使用前准备,安装这三个库 pip install grpcio pip install protobuf pip install grpcio_tools 2.建立一个proto文件 ...

  4. 第7.24节 Python案例详解:使用property函数定义属性简化属性访问代码实现

    第7.24节 Python案例详解:使用property函数定义属性简化属性访问代码实现 一.    案例说明 本节将通过一个案例介绍怎么使用property定义快捷的属性访问.案例中使用Rectan ...

  5. SQL Server 表的管理_关于完整性约束的详解(案例代码)

    SQL Server 表的管理之_关于完整性约束的详解 一.概述: ●约束是SQL Server提供的自动保持数据库完整性的一种方法, 它通过限制字段中数据.记录中数据和表之间的数据来保证数据的完整性 ...

  6. 迅为4412开发板Linux驱动教程——总线_设备_驱动注册流程详解

    本文转自:http://www.topeetboard.com 视频下载地址: 驱动注册:http://pan.baidu.com/s/1i34HcDB 设备注册:http://pan.baidu.c ...

  7. Python闭包详解

    Python闭包详解 1 快速预览 以下是一段简单的闭包代码示例: def foo(): m=3 n=5 def bar(): a=4 return m+n+a return bar >> ...

  8. 代码详解:TensorFlow Core带你探索深度神经网络“黑匣子”

    来源商业新知网,原标题:代码详解:TensorFlow Core带你探索深度神经网络“黑匣子” 想学TensorFlow?先从低阶API开始吧~某种程度而言,它能够帮助我们更好地理解Tensorflo ...

  9. [转] Python Traceback详解

    追莫名其妙的bugs利器-mark- 转自:https://www.jianshu.com/p/a8cb5375171a   Python Traceback详解   刚接触Python的时候,简单的 ...

随机推荐

  1. USACO35 翻转奶牛(尺取法)

    通过这道题了解了不少有关翻转的知识呢...... 首先,我们枚举翻转的区间长度k,假设i有个按钮,按下就可以让i~i+k-1翻转,那就有两个状态,按i或不按i(因为按两次相当于没按),那就往后扫一遍, ...

  2. ELF和a.out文件格式的比较

    本文讨论了 UNIX/LINUX 平台下三种主要的可执行文件格式:a.out(assembler and link editor output 汇编器和链接编辑器的输出).COFF(Common Ob ...

  3. YTU 2895: H--唱歌的鸟儿

    2895: H--唱歌的鸟儿 时间限制: 1 Sec  内存限制: 128 MB 提交: 26  解决: 10 题目描述 烟大东门有一棵大杨树,树上经常会有很多鸟儿飞来飞去.春天来了,学生物的小姜发现 ...

  4. YTU 1005: 渊子赛马

    1005: 渊子赛马 时间限制: 1000 Sec  内存限制: 64 MB 提交: 338  解决: 49 题目描述 赛马是一古老的游戏,早在公元前四世纪的中国,处在诸侯割据的状态,历史上称为&qu ...

  5. HDU - 2063 过山车(最大匹配数)(模板)

    1.男生女生一起坐过山车,每一排有两个座位,但是有个条件,就是每个女生必须找个男生做同伴一起(但是女生只愿意和某几个男生中的一个做同伴),求最多可以有多少对男女生组合坐上过山车. 2.二分图的最大匹配 ...

  6. spring-boot快速搭建解析

    创建方式: 1.在File菜单里面选择 New > Project,然后选择Spring Initializr: 2.使用maven直接构建,添加依赖. 1 2 3 4 pom.xml:Mave ...

  7. ChartCtrl源码剖析之——CChartGrid类

    CChartGrid类用来绘制波形区域中的表格,当绘制波形时波形就显示在这些表格上面.它处于该控件的区域,如下图所示: CChartGrid类的头文件. #if !defined(AFX_CHARTG ...

  8. Tomcat配置JVM运存

    setenv.bat set "JAVA_OPTS=-server -Xms256M -Xmx1024M -XX:PermSize=256m -XX:MaxPermSize=1024m&qu ...

  9. 洛谷 P3952 时间复杂度【模拟】

    把No写成NO,WA了一发-- 现在看这题也不难-- 用一个栈,记一下前面F的字母,是否合法,合法的有多长,每次入栈弹栈即可 #include<iostream> #include< ...

  10. bzoj 1089: [SCOI2003]严格n元树【dp+高精】

    设f[i]为深度为i的n元树数目,s为f的前缀和 s[i]=s[i-1]^n+1,就是增加一个根,然后在下面挂n个子树,每个子树都有s[i-1]种 写个高精就行了,好久没写WA了好几次-- #incl ...