Little Devil I

Problem Description
There is an old country and the king fell in love with a devil. The devil always asks the king to do some crazy things. Although the king used to be wise and beloved by his people. Now he is just like a boy in love and can’t refuse any request from the devil. Also, this devil is looking like a very cute Loli.

The devil likes to make thing in chaos. This kingdom’s road system is like simply a tree(connected graph without cycle). A road has a color of black or white. The devil often wants to make some change of this system.

In details, we call a path on the tree from a to b consists of vertices lie on the shortest simple path between a and b. And we say an edge is on the path if both its two endpoints is in the path, and an edge is adjacent to the path if exactly one endpoint of it is in the path.

Sometimes the devil will ask you to reverse every edge’s color on a path or adjacent to a path.

The king’s daughter, WJMZBMR, is also a cute loli, she is surprised by her father’s lolicon-like behavior. As she is concerned about the road-system’s status, sometimes she will ask you to tell there is how many black edge on a path.

Initially, every edges is white.

 
Input
The first line contains an integer T, denoting the number of the test cases.
For each test case, the first line contains an integer n, which is the size of the tree. The vertices be indexed from 1.
On the next n-1 lines, each line contains two integers a,b, denoting there is an edge between a and b. 
The next line contains an integer Q, denoting the number of the operations.
On the next Q lines, each line contains three integers t,a,b. t=1 means we reverse every edge’s color on path a to b. t=2 means we reverse every edge’s color adjacent to path a to b. t=3 means we query about the number of black edge on path a to b.

T<=5.
n,Q<=10^5.
Please use scanf,printf instead of cin,cout,because of huge input.

 
Output
For each t=3 operation, output the answer in one line.
 
Sample Input
1
10
2 1
3 1
4 1
5 1
6 5
7 4
8 3
9 5
10 6

10
2 1 6
1 3 8
3 8 10
2 3 4
2 10 8
2 4 10
1 7 6
2 7 3
2 1 4
2 10 10

 
Sample Output
3

Hint

reverse color means change from white to black or vice virsa.

 
Author
WJMZBMR
 

题意:

  给定一棵树,每条边有黑白两种颜色,初始都是白色,现在有三种操作:

     1 u v:u到v路径上的边都取成相反的颜色

     2 u v:u到v路径上相邻的边都取成相反的颜色(相邻即仅有一个节点在路径上)

         3 u v:查询u到v路径上有多少个黑色边

题解:

  这题卡了我一天

  首先树剖一下,

  操作1,对于一条重链,我们直接在线段树W上修改即可,这就是个简单的区间线段树,

      轻边的话,我们观察到它是由2个点决定的,那么考虑到操作2,我们可以思考到,假设一条的一个端点别进行了操作2,那么这条边就被修改了,两个端点同时被操作,那么我们不修改,这样的话此时我们将这里的轻边的两个端点都异或1就好了,这里需要用到线段树L

  操作2,对于重链,我们直接在线段树L上进行修改,但是我们要考虑到途中的重边或许会与改路径相连但又不在此路径上,

      熟悉树剖过程的话,其实也就在端点两端会有重边相接,和向上跳的过程中,轻边旁会有相交的重边,只要对跳点的重儿子进行线段树W上的修改即可

  操作3,重链,我们直接查询线段树W就好了,轻边的话我们查询L进行异或就行

  

#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18+1LL;
const double Pi = acos(-1.0);
const int N = 5e5+, M = 1e3+, mod = 1e9+, inf = 2e9; int dep[N],head[N],t=,sz[N],fa[N],indexS,top[N],pos[N],son[N];
struct ss{int to,next;}e[N*];
int n;
void add(int u,int v)
{e[t].to = v;e[t].next = head[u];head[u] = t++;}
void dfs(int u) {
int k = ;
sz[u] = ;
dep[u] = dep[fa[u]] + ;
for(int i = head[u]; i; i = e[i].next) {
int to = e[i].to;
if(to == fa[u]) continue;
fa[to] = u;
dfs(to);
sz[u] += sz[to];
if(sz[to] > sz[k]) k = to;
}
if(k) son[u] = k;
}
void dfs(int u,int chain) {
int k = ;
pos[u] = ++indexS;
top[u] = chain;
if(son[u] > )
dfs(son[u],chain);
for(int i = head[u]; i; i = e[i].next) {
int to = e[i].to;
if(dep[to] > dep[u] && son[u] != to)
dfs(to,to);
}
}
int lazy[N],sum[N],L[N],lazyw[N],color[N];
void init() {
indexS = ;
t = ;
memset(sz,,sizeof(sz));
memset(head,,sizeof(head));
memset(fa,,sizeof(fa));
memset(son,,sizeof(son));
memset(L,,sizeof(L));
memset(sum,,sizeof(sum));
memset(lazy,,sizeof(lazy));
memset(lazyw,,sizeof(lazyw));
memset(color,,sizeof(color));
memset(L,,sizeof(L));
}
void push_down(int i,int ll,int rr) {
if(lazyw[i] && ll != rr) {
lazyw[ls] ^= ;
if(ll!=)sum[ls] = (mid-ll+) - sum[ls];
else sum[ls] = (mid-ll) - sum[ls];
lazyw[rs] ^= ;
sum[rs] = (rr - mid) - sum[rs];
}
lazyw[i] = ;
}
void push_up(int i,int ll,int rr) {
sum[i] = sum[ls] + sum[rs];
}
int queryW(int i,int ll,int rr,int x,int y) {
int res = ;
push_down(i,ll,rr);
if(ll == x && rr == y)
return sum[i];
if(y <= mid) res += queryW(ls,ll,mid,x,y);
else if(x > mid) res += queryW(rs,mid+,rr,x,y);
else {
res += queryW(ls,ll,mid,x,mid);
res += queryW(rs,mid+,rr,mid+,y);
}
push_up(i,ll,rr);
return res;
}
int queryL(int i,int ll,int rr,int x) {
if(lazy[i]) {
if(ll == rr) L[i] ^= ;
else {
lazy[ls] ^= ;
lazy[rs] ^= ;
}
lazy[i] = ;
}
if(ll == rr) return L[i];
if(x <= mid) return queryL(ls,ll,mid,x);
else return queryL(rs,mid+,rr,x);
}
void updateL(int i,int ll,int rr,int x,int y) {
if(ll == x && rr == y) {
lazy[i] ^= ;
return ;
}
if(y <= mid) updateL(ls,ll,mid,x,y);
else if(x > mid) updateL(rs,mid+,rr,x,y);
else {
updateL(ls,ll,mid,x,mid);
updateL(rs,mid+,rr,mid+,y);
}
}
void updateW(int i,int ll,int rr,int x,int y) {
push_down(i,ll,rr);
if(ll == x && rr == y) {
lazyw[i] ^= ;
if(ll != )sum[i] = rr-ll+ - sum[i];
else sum[i] = rr-ll+- - sum[i];
return ;
}
if(y <= mid) updateW(ls,ll,mid,x,y);
else if(x > mid) updateW(rs,mid+,rr,x,y);
else {
updateW(ls,ll,mid,x,mid);
updateW(rs,mid+,rr,mid+,y);
}
push_up(i,ll,rr);
}
void updateL(int x,int y) {
int firx = , firy = ;
while(top[x] != top[y]) {
if(dep[top[x]] < dep[top[y]]) swap(x,y),swap(firx,firy);
if(son[x])updateW(,,n,pos[son[x]],pos[son[x]]);
updateL(,,n,pos[top[x]],pos[x]);
x = fa[top[x]];
}
if(dep[x] > dep[y]) swap(x,y);
if(son[x] && x==y)
updateW(,,n,pos[son[x]],pos[son[x]]);
if(x!=y && son[y])updateW(,,n,pos[son[y]],pos[son[y]]);
if(x != && son[fa[x]] == x) updateW(,,n,pos[x],pos[x]);
updateL(,,n,pos[x],pos[y]);
}
void updateW(int x,int y) {
while(top[x] != top[y]) {
if(dep[top[x]] < dep[top[y]]) swap(x,y);
if(top[x] != x) updateW(,,n,pos[son[top[x]]],pos[x]);
color[top[x]]^=;
x = fa[top[x]];
}
if(x == y) {}
else {
if(dep[x] < dep[y] && son[x]) updateW(,,n,pos[son[x]],pos[y]);
else if(son[y])updateW(,,n,pos[son[y]],pos[x]);
}
}
int solve(int x,int y) {
int res = ;
while(top[x] != top[y]) {
if(dep[top[x]] < dep[top[y]]) swap(x,y);
if(top[x] != x) res += queryW(,,n,pos[son[top[x]]],pos[x]);
int fx = queryL(,,n,pos[top[x]])^queryL(,,n,pos[fa[top[x]]]);
res += fx^color[top[x]];
x = fa[top[x]];
}
if(x == y) {
}
else {
if(dep[x] < dep[y] && son[x])res += queryW(,,n,pos[son[x]],pos[y]);
else if(son[y])res += queryW(,,n,pos[son[y]],pos[x]);
}
return res;
}
int main() {
int T;
scanf("%d",&T);
while(T--) {
scanf("%d",&n);
init();
for(int i = ; i < n; ++i) {
int x,y;
scanf("%d%d",&x,&y);
add(x,y),add(y,x);
}
dfs();
dfs(,);
int Q;
scanf("%d",&Q);
while(Q--) {
int op,x,y;
scanf("%d%d%d",&op,&x,&y);
if(op == ) {
updateW(x,y);
}
else if(op == )
{
updateL(x,y);
}
else
{
if(x == y) puts("");
else
printf("%d\n",solve(x,y));
}
}
}
return ;
}

HDU 4897 Little Devil I 树链剖分+线段树的更多相关文章

  1. HDU 2460 Network(双连通+树链剖分+线段树)

    HDU 2460 Network 题目链接 题意:给定一个无向图,问每次增加一条边,问个图中还剩多少桥 思路:先双连通缩点,然后形成一棵树,每次增加一条边,相当于询问这两点路径上有多少条边,这个用树链 ...

  2. BZOJ3862Little Devil I——树链剖分+线段树

    题目大意: 给一棵树,每条边可能是黑色或白色(起始都是白色),有三种操作: 1.将u到v路径上所有边颜色翻转(黑->白,白->黑) 2.将只有一个点在u到v路径上的边颜色翻转 3.查询u到 ...

  3. HDU4897 (树链剖分+线段树)

    Problem Little Devil I (HDU4897) 题目大意 给定一棵树,每条边的颜色为黑或白,起始时均为白. 支持3种操作: 操作1:将a->b的路径中的所有边的颜色翻转. 操作 ...

  4. Aragorn's Story 树链剖分+线段树 && 树链剖分+树状数组

    Aragorn's Story 来源:http://www.fjutacm.com/Problem.jsp?pid=2710来源:http://acm.hdu.edu.cn/showproblem.p ...

  5. 【BZOJ-2325】道馆之战 树链剖分 + 线段树

    2325: [ZJOI2011]道馆之战 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 1153  Solved: 421[Submit][Statu ...

  6. 【BZOJ2243】[SDOI2011]染色 树链剖分+线段树

    [BZOJ2243][SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的 ...

  7. BZOJ2243 (树链剖分+线段树)

    Problem 染色(BZOJ2243) 题目大意 给定一颗树,每个节点上有一种颜色. 要求支持两种操作: 操作1:将a->b上所有点染成一种颜色. 操作2:询问a->b上的颜色段数量. ...

  8. POJ3237 (树链剖分+线段树)

    Problem Tree (POJ3237) 题目大意 给定一颗树,有边权. 要求支持三种操作: 操作一:更改某条边的权值. 操作二:将某条路径上的边权取反. 操作三:询问某条路径上的最大权值. 解题 ...

  9. bzoj4034 (树链剖分+线段树)

    Problem T2 (bzoj4034 HAOI2015) 题目大意 给定一颗树,1为根节点,要求支持三种操作. 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子 ...

  10. Aizu 2450 Do use segment tree 树链剖分+线段树

    Do use segment tree Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.bnuoj.com/v3/problem_show ...

随机推荐

  1. UART中RTS、CTS

    RTS (Require ToSend,发送请求)为输出信号,用于指示本设备准备好可接收数据,低电平有效,低电平说明本设备可以接收数据. CTS (Clear ToSend,发送允许)为输入信号,用于 ...

  2. Python 3.52官方文档翻译 http://usyiyi.cn/translate/python_352/library/index.html 必看!

    Python 3.52官方文档翻译   http://usyiyi.cn/translate/python_352/library/index.html 觉得好的麻烦点下推荐!谢谢!

  3. java.sql.SQLException: Data truncated for column 'lastSeason' at row 1

    在使用项目将数据存储到 datetime 的字段 ,抛出了这个异常 而我是使用Java.util.Date 存储过去的 解决代码如下: Date date = new Date(); demo.set ...

  4. Nowcoder 106 C.Professional Manager(统计并查集的个数)

    题意: 给出四种操作: 1. 合并u,v两棵树 2. 从u所在的集合中删除u 3. 询问u所在集合有多少颗树 4. 询问 u,v是否在同一个集合 分析: 对于删除操作, 只要新开一个点代替原来的点即可 ...

  5. luogu2261 [CQOI2007]余数求和

    除法分块. 猜想: 记 \(g(x)=\lfloor k / \lfloor k / x\rfloor \rfloor\),则对于 \(i \in [x,g(x)]\),\(\lfloor k / i ...

  6. python操作剪贴板错误提示:pywintypes.error: (1418, 'GetClipboardData',线程没有打开的剪贴板)

    问题现象:通过打断点,一步步调试可以正常复制和粘贴剪贴板数据.但是直接运行会报错pywintypes.error: (1418, 'GetClipboardData',线程没有打开的剪贴板) 问题原因 ...

  7. LR百分比模式

    1  场景模式切换 Vuser Group Mode转换为Percentage Mode:如下 Scenario->Convert Scenairio to the VuserGroup Mod ...

  8. gitHub网站上常见英语翻译2

    repositories资料库 compilers with rich code analysis APIs.编译器具有丰富的代码分析API. plugins插件 With a variety of ...

  9. 【树状数组+dp】HDU 5542 The Battle of Chibi

    http://acm.hdu.edu.cn/showproblem.php?pid=5542 [题意] 给定长为n的序列,问有多少个长为m的严格上升子序列? [思路] dp[i][j]表示以a[i]结 ...

  10. centos下wget时提示unable to resolve host address ...

    网络正常的情况,可以查看/etc/resolv.conf [root@localhost ~]# more /etc/resolv.conf # Generated by NetworkManager ...