题目描述

在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。

每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。

因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。

例如有3种果子,数目依次为1,2,9。可以先将1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。

输入输出格式

输入格式:

输入文件fruit.in包括两行,第一行是一个整数n(1<=n<=10000),表示果子的种类数。第二行包含n个整数,用空格分隔,第i个整数ai(1<=ai<=20000)是第i种果子的数目。

输出格式:

输出文件fruit.out包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于2^31。

输入输出样例

输入样例#1:

3
1 2 9
输出样例#1:

15

说明

对于30%的数据,保证有n<=1000:

对于50%的数据,保证有n<=5000;

对于全部的数据,保证有n<=10000。

题解

用反证法得出先合并最小是最优的,用堆维护一下权值就行,其实下面的代码在基础书上就有了

/*
Author: ksq
Algorithm: Heap
*/
#include <stdio.h>
#include <string.h>
using namespace std;
int heap[10010], heap_size;
void swap(int &x, int &y)
{
x^=y, y^=x, x^=y;
}
void put(int d)
{
int now, next;
heap[++heap_size] = d;
now = heap_size;
while(now > 1)
{
next = now >> 1;
if(heap[now] >= heap[next]) return;
swap(heap[now], heap[next]);
now = next;
}
}
int get()
{
int res = heap[1], now, next;
heap[1] = heap[heap_size--];
now = 1;
while(now * 2 <= heap_size)
{
next = now << 1;
if(next < heap_size && heap[next] > heap[next|1]) next|=1;
if(heap[next] >= heap[now]) break;
swap(heap[next], heap[now]);
now = next;
}
return res;
}
int n;
int main()
{
scanf("%d", &n);
for(int i = 1; i <= n; ++i)
{
int x;
scanf("%d", &x);
put(x);
}
int ans = 0, x, y;
for(int i = 1; i < n; ++i)
{
x = get();
y = get();
ans += x + y;
put(x + y);
}
printf("%d\n", ans);
return 0;
}

  

[Noip2004][Day ?][T?]合并果子(?.cpp)的更多相关文章

  1. 洛谷P6033 [NOIP2004 提高组] 合并果子 加强版 (单调队列)

    数据加强了,原来nlogn的复杂度就不行了...... 首先对原来的n个数排序(注意不能用快排),因为值域是1e5,所以可以开桶排序,开两个队列,一个存原来的n个数(已经满足单增),另一队列存两两合并 ...

  2. 代码源 每日一题 分割 洛谷 P6033合并果子

    ​ 题目链接:切割 - 题目 - Daimayuan Online Judge 数据加强版链接: [NOIP2004 提高组] 合并果子 加强版 - 洛谷 题目描述 有一个长度为 ∑ai 的木板,需要 ...

  3. 合并果子(NOIP2004)

    合并果子(NOIP2004)[问题描述]在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆.每一次合并,多多可以把两堆果子合并到一起,消耗的体 ...

  4. NC16663 [NOIP2004]合并果子

    NC16663 [NOIP2004]合并果子 题目 题目描述 ​ 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. ​ 每一次合并,多多可 ...

  5. NOIP2004合并果子

    题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可 ...

  6. [luoguP1090][Noip2004]合并果子

                                            合并果子 首先来看一下题目: (OI2004合并果子) [题目描述] 果园里,多多已经将所有的果子打了下来,而且按果子的 ...

  7. [NOIP2004] 提高组 洛谷P1090 合并果子

    题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可 ...

  8. 加强版:合并果子[NOIP2004]

    题目 链接:https://ac.nowcoder.com/acm/contest/26887/1001 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 131072K, ...

  9. 合并果子 (codevs 1063) 题解

    [问题描述] 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和 ...

随机推荐

  1. java final static 和final区别

    static 和非static 之间的差异,只有当值在运行期间初始化的前提下,这种差异才会揭示出来.因为编译期间的值被编译器认为是相 同的. package thinking; public clas ...

  2. spring 通配符

    原文地址:http://www.bubuko.com/infodetail-848675.html classpath是指 WEB-INF文件夹下的classes目录(惯例大于配置) classpat ...

  3. [WOJ1583]向右看齐

    题目链接: WOJ1583 题目分析: 大水题--我就来水个题解 倒序扫,单调栈维护单减序列,每个对象的答案是栈里它下面那个元素 代码: #include<bits/stdc++.h> # ...

  4. hibernate Day1 案例代码

    1.创建Person类 package com.icss.pojo; public class Person { private int uid; private String uname; priv ...

  5. 机器学习概念之特征处理(Feature processing)

    不多说,直接上干货! 肯定也有不少博友,跟我一样,刚开始接触的时候,会对这三个概念混淆. 以下是,特征处理.特征提取.特征转换和特征选择的区别! 特征处理主要包含三个方面:特征提取.特征转换和特征选择 ...

  6. C#基础学习1

    开发入门,最基础的学习!

  7. 动手实现 Redux(四):共享结构的对象提高性能

    接下来两节某些地方可能会稍微有一点点抽象,但是我会尽可能用简单的方式进行讲解.如果你觉得理解起来有点困难,可以把这几节多读多理解几遍,其实我们一路走来都是符合“逻辑”的,都是发现问题.思考问题.优化代 ...

  8. webfrom ASP开发基础跟模式

    ASP.NET - .net开发网站应用程序的技术总称 ASP WebForm           MVC   是ASP.NET的两个技术方法 WebForm类似于WinForm,可视化操作 MVC类 ...

  9. 【经验总结】VS2010下建立MFC程序

    孙鑫的MFC教学视频非常不错,但是由于视频中孙鑫老师采用VC6.0版本,而现在 许多人都转向了使用VS,VS为我们生成了许多不需要的代码,这也导致在这节课的学习编程中总是遇到一些困难.那么,如何去掉这 ...

  10. js深拷贝与浅拷贝的区别及实现

    1. 对于基本数据类型 其值在内存中占据着固定大小的空间,并被保存在栈内存中.当一个变量向另一个变量复制基本类型的值,会创建这个值的副本,并且我们不能给基本数据类型的值添加属性.其为深拷贝. 2. 对 ...